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Motivation

• Connect turbulence length scale with mixing length scale

• Explore the three parameters of the Mann model as functions
of stability and wind speed

• Expand the spectral tensor model to cover other stabilities
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Turbulence for wind turbine load modeling

The purpose is to describe spatial and temporal fluctuations with
relevance for wind turbine load calculations and how instruments
may sense these fluctuations remotely.
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Rapid distortion theory

Rapid distortion theory (RDT) was originally formulated to
calculate turbulence in a wind tunnel contraction.
It was later used to model the response of turbulence to shear.
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Length scale of the wind profile

l =
u∗

∂U/∂z
. (1)

Surface layer

• Neutral conditions:
(lSL)N = κz . (2)

• Diabatic conditions:

lSL = (lSL)Nφm
−1 = κzφm

−1, (3)
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Length scale of the turbulence

Surface layer and neutral conditions
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Site and measurements

Meteorological
mast

Light tower

1000 m

North
Sea

North
Sea

30◦

125◦

S

N

W E

• 20 Hz Sonics at 10, 20, 40, 60, 80. 100 and 160 m

• 10-min time series collected for ∼1 year



Motivation Theory Site Diabatic observations Adiabatic observations Future work Conclusions

Results: diabatic observations

Obukhov length Atmospheric L u∗o zo zi No. of
interval [m] stability class [m] [m s−1] [m] [m] 10-min data

−100 ≤ L ≤ −50 Very unstable (vu) −74 0.35 0.013 600 397
−200 ≤ L ≤ −100 Unstable (u) −142 0.41 0.012 600 459
−500 ≤ L ≤ −200 Near unstable (nu) −314 0.40 0.012 550 292
|L| ≥ 500 Neutral (n) 5336 0.39 0.013 488 617

200 ≤ L ≤ 500 Near stable (ns) 318 0.36 0.012 451 439
50 ≤ L ≤ 200 Stable (s) 104 0.26 0.008 257 1144
10 ≤ L ≤ 50 Very stable (vs) 28 0.16 0.002 135 704

• zi = C u∗o
|fc | for neutral and stable conditions

• zo from

U =
u∗o
κ

[
ln

(
z

zo

)
− ψm

]
(4)
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Results: diabatic observations

• ∂U/∂z from the fitting of Högström (1988) is used for l
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Very unstable spectra
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Unstable spectra
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Near unstable spectra
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Neutral spectra
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Near stable spectra
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Stable spectra
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Very stable spectra
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Mann (1994) model results
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Length scale relation for diabatic conditions: Mann (1994)
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Figure: Fit LM = 1.702l − 0.006l2 (solid), LM = 1.93l (dash-dotted) and
LM = 1.70l (dashed)
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Results: adiabatic observations

Wind speed Wind speed u∗o zo Rof × 105 zi No. of
interval [m s−1] class [m s−1] [m] [-] [m] 10-min data

3–5 n1 0.26 0.018 1.23 328 159
5–7 n2 0.38 0.018 1.73 466 233
7–9 n3 0.45 0.009 4.11 562 129
9–11 n4 0.54 0.008 5.91 674 75
11–13 n5 0.67 0.009 5.99 840 21
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3–5 m/s spectra
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5–7 m/s spectra
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7–9 m/s spectra
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9–11 m/s spectra
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11–13 m/s spectra
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Future work

• Include buoyancy on Coriolis force in the Rapid Distortion (M.
Kelly, A. Chougule) (〈uv〉 6= 0 even for neutral quite close to
the surface)

• Compare models with NCAR LES data

• Compare with Høvsøre data, also cross-spectra
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Conclusions

• Within the surface layer and for a range of stabilities, l is
linearly proportional to (λm)w and to LM from Mann (1994)

• Beyond surface layer too, except for very unstable conditions

• Stability and Coriolis force will be included in the future
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