

Jakob Mann, Alfredo Peña and Sven-Erik Gryning Wind Energy division, Risø DTU

November 29, 2009

Risø DTU National Laboratory for Sustainable Energy

M	otiv	atic	m
---	------	------	---

Motivation

- Connect turbulence length scale with mixing length scale
- Explore the three parameters of the Mann model as functions of stability and wind speed
- Expand the spectral tensor model to cover other stabilities

N.4. 11 11									
Motivation	Theory	Site	Diabatic observations	Adiabatic observations	Future work	Conclusions			

Motivation

• Connect turbulence length scale with mixing length scale

- Explore the three parameters of the Mann model as functions of stability and wind speed
- Expand the spectral tensor model to cover other stabilities

Motivation	Theory	Site	Diabatic observations	Adiabatic observations	Future work	Conclusions
			Motiv	ation		

- Connect turbulence length scale with mixing length scale
- Explore the three parameters of the Mann model as functions of stability and wind speed
- Expand the spectral tensor model to cover other stabilities

Motivation	Theory	Site	Diabatic observations	Adiabatic observations	Future work	Conclusions
			Motiva	ation		

- Connect turbulence length scale with mixing length scale
- Explore the three parameters of the Mann model as functions of stability and wind speed
- Expand the spectral tensor model to cover other stabilities

Turbulence for wind turbine load modeling

The purpose is to describe spatial and temporal fluctuations with relevance for wind turbine load calculations and how instruments may sense these fluctuations remotely.

Rapid distortion theory

Rapid distortion theory (RDT) was originally formulated to calculate turbulence in a wind tunnel contraction.

It was later used to model the response of turbulence to shear.

Length scale of the wind profile

$$U = \frac{u_*}{\partial U/\partial z}.$$
 (1)

Surface layer

• Neutral conditions:

$$(I_{SL})_N = \kappa z. \tag{2}$$

$$I_{SL} = (I_{SL})_N \phi_m^{-1} = \kappa z \phi_m^{-1}, \qquad (3)$$

Length scale of the wind profile

$$I = \frac{u_*}{\partial U/\partial z}.$$
 (1)

Surface layer

• Neutral conditions:

$$(I_{SL})_N = \kappa z. \tag{2}$$

$$I_{SL} = (I_{SL})_N \phi_m^{-1} = \kappa z \phi_m^{-1}, \qquad (3)$$

Length scale of the wind profile

$$I = \frac{u_*}{\partial U/\partial z}.$$
 (1)

Surface layer

• Neutral conditions:

$$(I_{SL})_N = \kappa z. \tag{2}$$

$$I_{SL} = (I_{SL})_N \phi_m^{-1} = \kappa z \phi_m^{-1}, \qquad (3)$$

Length scale of the wind profile

$$I = \frac{u_*}{\partial U/\partial z}.$$
 (1)

Surface layer

• Neutral conditions:

$$(I_{SL})_N = \kappa z. \tag{2}$$

$$I_{SL} = (I_{SL})_N \phi_m^{-1} = \kappa z \phi_m^{-1}, \qquad (3)$$

Length scale of the wind profile

$$I = \frac{u_*}{\partial U/\partial z}.$$
 (1)

Surface layer

• Neutral conditions:

$$(I_{SL})_N = \kappa z. \tag{2}$$

$$I_{SL} = (I_{SL})_N \phi_m^{-1} = \kappa z \phi_m^{-1}, \qquad (3)$$

Length scale of the wind profile

$$I = \frac{u_*}{\partial U/\partial z}.$$
 (1)

Surface layer

• Neutral conditions:

$$(I_{SL})_N = \kappa z. \tag{2}$$

$$I_{SL} = (I_{SL})_N \phi_m^{-1} = \kappa z \phi_m^{-1}, \qquad (3)$$

Length scale of the turbulence

Surface layer and neutral conditions

Theory

Conclusions

Site and measurements

- 20 Hz Sonics at 10, 20, 40, 60, 80. 100 and 160 m
- + 10-min time series collected for ${\sim}1$ year

Risø DTU National Laboratory for Sustainable Energy

Results: diabatic observations

Obukhov length	Atmospheric	L	u _{*o}	Zo	Zi	No. of
interval [m]	stability class	[m]	$[m \ s^{-1}]$	[m]	[m]	10-min data
$-100 \le L \le -50$	Very unstable (vu)	-74	0.35	0.013	600	397
$-200 \leq L \leq -100$	Unstable (u)	-142	0.41	0.012	600	459
$-500 \le L \le -200$	Near unstable (nu)	-314	0.40	0.012	550	292
$ L \ge 500$	Neutral (n)	5336	0.39	0.013	488	617
$200 \le L \le 500$	Near stable (ns)	318	0.36	0.012	451	439
$50 \le L \le 200$	Stable (s)	104	0.26	0.008	257	1144
$10 \le L \le 50$	Very stable (vs)	28	0.16	0.002	135	704

• $z_i = C \frac{u_{*o}}{|f_c|}$ for neutral and stable conditions

• z_o from

$$U = \frac{u_{*o}}{\kappa} \left[\ln \left(\frac{z}{z_o} \right) - \psi_m \right]$$
(4)

Results: diabatic observations

• $\partial U/\partial z$ from the fitting of Högström (1988) is used for I

Risø DTU National Laboratory for Sustainable Energy

Very unstable spectra

DTU

Unstable spectra

Near unstable spectra

Neutral spectra

Near stable spectra

Risø DTU

Stable spectra

Very stable spectra

Risø DTU National Laboratory for Sustainable Energy

Motivation

Theory Site

Future work C

Conclusions

Mann (1994) model results

Risø DTU National Laboratory for Sustainable Energy

Length scale relation for diabatic conditions: Mann (1994)

Figure: Fit $L_M = 1.702I - 0.006I^2$ (solid), $L_M = 1.93I$ (dash-dotted) and $L_M = 1.70I$ (dashed)

Risø DTU National Laboratory for Sustainable Energy

Results: adiabatic observations

Wind speed	Wind speed	<i>u</i> * <i>o</i>	Zo	${ m Ro}_f imes 10^5$	Zi	No. of
interval [m s ⁻¹]	class	$[m \ s^{-1}]$	[m]	[-]	[m]	10-min data
3–5	n1	0.26	0.018	1.23	328	159
5–7	n2	0.38	0.018	1.73	466	233
7–9	n3	0.45	0.009	4.11	562	129
9–11	n4	0.54	0.008	5.91	674	75
11–13	n5	0.67	0.009	5.99	840	21

3–5 m/s spectra

DTU

5–7 m/s spectra

7–9 m/s spectra

9-11 m/s spectra

DTU

11–13 m/s spectra

Motivation	Theory	Site	Diabatic observations	Adiabatic observations	Future work	Conclusions
			Future	work		

- Include buoyancy on Coriolis force in the Rapid Distortion (M. Kelly, A. Chougule) ($\langle uv \rangle \neq 0$ even for neutral quite close to the surface)
- Compare models with NCAR LES data
- Compare with Høvsøre data, also cross-spectra

Wotivation	5.4			
	1\71	OTIN	12110	
	1 1 1	OUN		

- Within the surface layer and for a range of stabilities, l is linearly proportional to $(\lambda_m)_w$ and to L_M from Mann (1994)
- Beyond surface layer too, except for very unstable conditions
- Stability and Coriolis force will be included in the future

Motivation	Theory	Site	Diabatic observations	Adiabatic observations	Future work	Conclusions

- Within the surface layer and for a range of stabilities, I is linearly proportional to $(\lambda_m)_w$ and to L_M from Mann (1994)
- Beyond surface layer too, except for very unstable conditions
- Stability and Coriolis force will be included in the future

Motivation	Theory	Site	Diabatic observations	Adiabatic observations	Future work	Conclusions

- Within the surface layer and for a range of stabilities, I is linearly proportional to $(\lambda_m)_w$ and to L_M from Mann (1994)
- Beyond surface layer too, except for very unstable conditions
- Stability and Coriolis force will be included in the future

Motivation	Theory	Site	Diabatic observations	Adiabatic observations	Future work	Conclusions			
Canalusiana									

- Within the surface layer and for a range of stabilities, I is linearly proportional to $(\lambda_m)_w$ and to L_M from Mann (1994)
- Beyond surface layer too, except for very unstable conditions
- Stability and Coriolis force will be included in the future