DTU

Rotor/ABL Aerodynamics, TASK-1

Niels N. Sørensen

Wind Energy Division · Risø DTU

RISØ-DTU, 25-01-2010

Introduction

- Overview and progress
- Planning for next period
- Some technical results

Several researcher have contributed to the technical part of my slides today Contributions from:

- Wen Zhong Shen
- Frederik Zahle
- Pierre-Elouan Rethorè

Objective

Task-1: Rotor/ABL Aerodynamics

Investigate the effect of Atmospheric Boundary Layer characteristics on rotor aerodynamics

- Laminar turbulent transition
- Wind Shear and yaw
- Unsteady inflow, inflow turbulence
- Dynamic stall

Objective

Task-1: Rotor/ABL Aerodynamics

Investigate the effect of Atmospheric Boundary Layer characteristics on rotor aerodynamics

- Laminar turbulent transition
- Wind Shear and yaw
- Unsteady inflow, inflow turbulence
- Dynamic stall

Partners participating in the study

Risø-DTU, DTU MEK, LM-Glasfiber, Mek-DTU, Siemens, Vestas

Computational activities

Task-1: Rotor/ABL Aerodynamics

Navier-Stokes simulations, using resolved geometry

- EllipSys3D, LM-Glasfiber, Mek-DTU, Risø-DTU
- CFX, Siemens Wind Power
- Fluent, Vestas

Computational activities

Task-1: Rotor/ABL Aerodynamics

Navier-Stokes simulations, using resolved geometry

- EllipSys3D, LM-Glasfiber, Mek-DTU, Risø-DTU
- CFX, Siemens Wind Power
- Fluent, Vestas

Additionally, the computations will couple to Actuator-line and -disc computations from Task-2 and Task-3.

Experiments

A series of experiments are available

DTU

≣

Available Experiments Experiments

A series of experiments are available

DTU

Ξ

Experiments

Experiments

A series of experiments are available

- Nrel Phase-VI
- MEXICO
- DAN-Aero

DTU

Ξ

Experiments

- Nrel Phase-VI
- MEXICO
- DAN-Aero
- Topfarm

Experiments

- Nrel Phase-VI
- MEXICO
- DAN-Aero
- Topfarm
- LIDAR/Wind-Scanner

Experiments

- Nrel Phase-VI
- MEXICO
- DAN-Aero
- Topfarm
- LIDAR/Wind-Scanner
- Siemens Full Scale

Experiments

A series of experiments are available

- Nrel Phase-VI
- MEXICO
- DAN-Aero

Topfarm

- LIDAR/Wind-Scanner
- Siemens Full Scale
- Tunnel data, e.g. LM-Glasfiber

Milestones

Milestones

The following milestones were defined within the present package

M1: Parametric study of two modern turbines in atmospheric shear.
 Month 12 Delayed

Milestones

- M1: Parametric study of two modern turbines in atmospheric shear.
 Month 12 Delayed
- M2: Evaluation of the importance of cross flow instabilities for modern wind turbine rotors. Month 24

Milestones

- M1: Parametric study of two modern turbines in atmospheric shear.
 Month 12 Delayed
- M2: Evaluation of the importance of cross flow instabilities for modern wind turbine rotors. Month 24
- M3: Parametric study of two modern turbines in yaw. Month 24

Milestones

- M1: Parametric study of two modern turbines in atmospheric shear.
 Month 12 Delayed
- M2: Evaluation of the importance of cross flow instabilities for modern wind turbine rotors. Month 24
- M3: Parametric study of two modern turbines in yaw. Month 24
- M4: Development of refined 'engineering' yaw model. Month 36

Milestones

- M1: Parametric study of two modern turbines in atmospheric shear.
 Month 12 Delayed
- M2: Evaluation of the importance of cross flow instabilities for modern wind turbine rotors. Month 24
- M3: Parametric study of two modern turbines in yaw. Month 24
- M4: Development of refined 'engineering' yaw model. Month 36
- M5: Evaluation of dynamic stall models and airfoil characteristics with respect to dynamic inflow and inflow turbulence. Month 48

Milestones

- M1: Parametric study of two modern turbines in atmospheric shear.
 Month 12 Delayed
- M2: Evaluation of the importance of cross flow instabilities for modern wind turbine rotors. Month 24
- M3: Parametric study of two modern turbines in yaw. Month 24
- M4: Development of refined 'engineering' yaw model. Month 36
- M5: Evaluation of dynamic stall models and airfoil characteristics with respect to dynamic inflow and inflow turbulence. Month 48
- M6: Simulation of various unsteady inflow conditions for the NM80.
 Month 36

Ph.D. and P.D. in Rotor Aerodynamics

Ph.D. and Post Doc. AED-PhD

AED-PhD details

- Shared financing between Siemens, Risø-DTU, and DSF
- Connected to TASK-1, Rotor/ABL Aerodynamics
- We will try and start this Ph.D. one year early, in 2012
- The detailed work description will be in second half year 2011

Ph.D. and Post Doc. RISØ-PhD2

RISØ-PhD2 details

- Shared financing between Risø-DTU and DSF
- Connected to TASK-2 and TASK-3, Turbine Wakes and Farms
- We will try and start this Ph.D. one year early, in 2011
- The detailed work description must be made in spring 2011

AED-RISØ-PD

- Purely financed by DSF
- Planned to be connected to TASK-4 and TASK-5
- No real planning yet, will first start 2014

Ph.D. and Post Doc.

Task-1: Ph.D's and Post Doc's

	2010	2011	2012	2013	2014	2015		
AED-PhD RISØ-PhD2		12	12 12	12 12	12 12	12		
AED-PD					12	12		
						12		
Connection to	o Task's TASK-() TAS	iK-1	TASK-2	TASK-3	TASK-4	TASK-5	

- TASK-3: Wind Farms (JNS)
- Task-4: Siting in Forested and Complex Terrain (JM)
- Task-5: Atmospheric Boundary Layers (JM)

First Year, Original plan

DTU

Focus on milestone M1 Parametric study of two modern turbines in atmospheric shear

Partners (Risø-DTU, LM-Glasfiber, Mek-DTU, Siemens, Vestas)

The computations will be performed using RANS/DES type solvers, and fully resolved rotor geometry.

First Year, Original plan

DTU

Focus on milestone M1 Parametric study of two modern turbines in atmospheric shear

Partners (Risø-DTU, LM-Glasfiber, Mek-DTU, Siemens, Vestas)

The computations will be performed using RANS/DES type solvers, and fully resolved rotor geometry.

Definition of cases to run

DTU

First Year, Original plan

Focus on milestone M1 Parametric study of two modern turbines in atmospheric shear

Partners (Risø-DTU, LM-Glasfiber, Mek-DTU, Siemens, Vestas)

The computations will be performed using RANS/DES type solvers, and fully resolved rotor geometry.

- Definition of cases to run
- Definition of output, pressure, sectional loads etc

First Year, Original plan Focus on milestone M1

Parametric study of two modern turbines in atmospheric shear

Partners (Risø-DTU, LM-Glasfiber, Mek-DTU, Siemens, Vestas)

The computations will be performed using RANS/DES type solvers, and fully resolved rotor geometry.

- Definition of cases to run
- Definition of output, pressure, sectional loads etc
- Zero shear run including lam/turb transition (steady/unsteady)

DTU

First Year, Original plan

Focus on milestone M1 Parametric study of two modern turbines in atmospheric shear

Partners (Risø-DTU, LM-Glasfiber, Mek-DTU, Siemens, Vestas)

The computations will be performed using RANS/DES type solvers, and fully resolved rotor geometry.

- Definition of cases to run
- Definition of output, pressure, sectional loads etc
- Zero shear run including lam/turb transition (steady/unsteady)
- Shear computations

Mexico axial flow cases, investigating differences with measurements

Actual activities, First Year

Mexico axial flow cases, investigating differences with measurements

Mexico yaw cases

Actual activities, First Year

- Mexico axial flow cases, investigating differences with measurements
- Mexico yaw cases
- NREL Phase-VI dynamic stall computations during standstill

Actual activities, First Year

- Mexico axial flow cases, investigating differences with measurements
- Mexico yaw cases
- NREL Phase-VI dynamic stall computations during standstill
- Rotors in partial wake and in shear

Actual activities, First Year

- Mexico axial flow cases, investigating differences with measurements
- Mexico yaw cases
- NREL Phase-VI dynamic stall computations during standstill
- Rotors in partial wake and in shear
- Finding and extracting data sets from the DAN-AERO exp.

Plans for 2011

Second Year

Focus on the following milestones

- M1: Parametric study of two modern turbines in atmospheric shear
- M2: Evaluation of the importance of cross flow instabilities for modern wind turbine rotors
- M3: Parametric study of two modern turbines in yaw

Partners (Risø-DTU, LM-Glasfiber, Mek-DTU, Siemens, Vestas)

The computations will be performed using RANS/DES type solvers, and fully resolved rotor geometry.

Plans for 2011

Second Year

Focus on the following milestones

- M1: Parametric study of two modern turbines in atmospheric shear
- M2: Evaluation of the importance of cross flow instabilities for modern wind turbine rotors
- M3: Parametric study of two modern turbines in yaw

Partners (Risø-DTU, LM-Glasfiber, Mek-DTU, Siemens, Vestas)

The computations will be performed using RANS/DES type solvers, and fully resolved rotor geometry.

NDA issues

Access to Mexico data if needed

Selected Technical Results

Technical ResultsMexico tunnel investigationQuestions surrounding the tunnel effect

- Can the tunnel explain the thrust/induction issue seen in exp?
- Does the recirculation region affects the wake measurements?
- Does the wind turbine blockage effect affects the wind speed measurements?
- Is the wind turbine affected by the wind tunnel?
- How far downstream can we measure the wake?
- Is there some unsteady effects?

Technical ResultsMexico tunnel investigationPerspective view

The nozzle and collector shapes are not available (confidential).

We made up some streamlined designs.

Technical ResultsMexico tunnel investigationPerspective view

- We use a slip boundary condition at the surface (zero gradient).
- This reduces dramatically the number of cells necessary, but it is done at the expense of the boundary layer description.

Technical ResultsMexico tunnel investigationDifferent wind speeds & same $C_T = 0.77$

All the velocities collapse completely.

• C_T is the only parameter.

Technical Results Mexico tunnel investigation

Resolved geometry in the tunnel

Technical ResultsMexico tunnel investigationPresent Conclusion

- The collector has a big impact on the wake region $x > 1.3 \times D$
- Thrust/Induction discrepancy not explained by tunnel effects

Technical Results Mexico Yaw Results Mexico, Yaw Computations

DTU

Mexico 30 degrees Yaw, W=15 [m/s], Normal Force. Left resolved geometry, right Actuator Line

Technical Results Mexico Yaw Results Mexico, Yaw Computations

Mexico 30 degrees Yaw, W=15 [m/s], Tangential Force. Left resolved geometry, right Actuator Line

Technical Results Mexico Yaw Results

Mexico, Yaw Computations

Mexico 30 degrees Yaw, W=15 [m/s], Wake Development. Left resolved geometry, right Actuator Line

position.

Rotor/ABL Aerodynamics TASK-1 25-01-2010

Name	Mean Aoa [deg]	Amplitude [deg]	Pitch time [s]	Reduced freq.
47311	7.91	5.55	0.8496	0.099
47320	13.89	5.55	0.8126	0.099
47040	22.92	5.04	1.1261	0.075

	center line
٠	The mean AOA given below is for the 47%

 The geometrical AOA is defined as the angle between the local chord and the test section

section

Technical Results Nrel Standstill Pitch The configuration

The tested configuration is based on the NREL-Phase-VI turbine during standstill

Technical Results Nrel Standstill Pitch CASE 47040, Low AOA case

Technical Results Nrel Standstill Pitch CASE 47040, Low AOA case

r/R=0.80

DES Tran

10 12 14

Maar

Technical Results Nrel Standstill Pitch CASE 47040, High AOA case

Technical Results Nrel Standstill Pitch CASE 47040, High AOA case

27 of 28 Niels N. Sørensen, nsqr

Risø DTU

Technical Results Nrel Standstill Pitch Conclusion

- The coupled methodology DDES and transition are numerically stable
- The transition model opens the loops improving agreement with measurements
- We have obtained general good agreement with measured values, even at high AOA
- We believe that we are ready for the rotating cases

Technical Results Nrel Standstill Pitch Conclusion

DTU

- The coupled methodology DDES and transition are numerically stable
- The transition model opens the loops improving agreement with measurements
- We have obtained general good agreement with measured values, even at high AOA
- We believe that we are ready for the rotating cases

