
IEA WakeBench

Kurt S. Hansen - ksh@mek.dtu.dk

Pierre-Elouan Mikael Réthoré pire@risoe.dtu.dk

DTU Mechanical Engineering

Department of Mechanical Engineering

IEA Task 31 WAKEBENCH

Objectives:

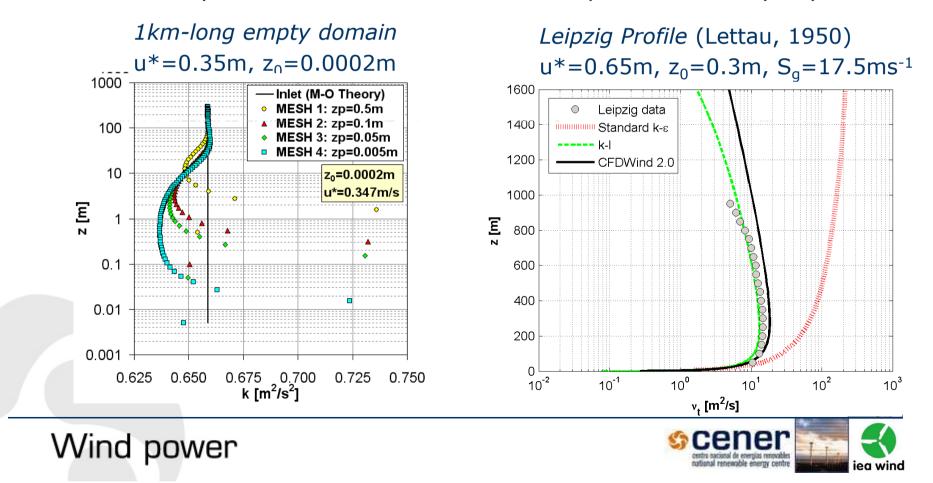
- 1) Validate various wind farm power simulation tools in IEA Task 31 "Benchmarking of Wind Farm Flow Models".
- 2) Establish guidelines for test cases; which can be used to validate and compare wind farm flow models.

IEA Task 31 WAKEBENCH – Working Groups

- WG1 Flow over flat terrain
- WG2 Flow over hills in wind tunnel
- WG3 Flow over hills in the field
- WG4 Flow in and above forest canopies
- WG5 Flow over Mountains
- WG6 WT Wakes. Theoretical verification
- WG7 WT Wakes. Wind tunnel experiments
- WG8 Small wind farms / Individual WT
- WG9 Large wind farms

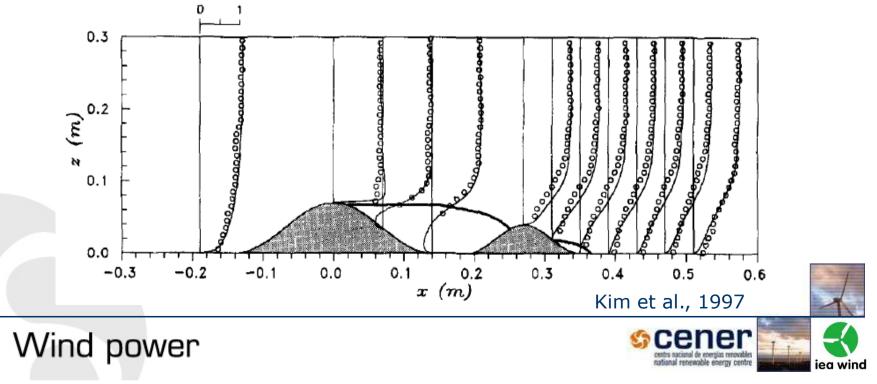
IEA Task 31: WAKEBENCH – Initial benchmarks

ABL	Models	Participants	Misc	
WG1: Flow over flat terrain				
1. Monin-Obukhov Quasy-steady surface layer				
profiles at different stabilities				
2. Leipzig Quasy-steady ABL in neutral				
conditions				
WG2: Flow over hills in wind tunnel				
2.1 POSTECH 2D hills; Isolated 2D hills with and				
without flow separation				
2.2 POSTECH 2D hills; Hill-hill interaction using the				
same hill geometries of previous				
WG3 Flow over hills in the field				
3.1 Askervein 210. Isolated hill, historical reference				
3.2 Askervein different wind directions				
3.3 Bolund Revisit blind test simulations, now				
calibration is allowed				
WG4 Flow in and above forest canopies				
4.1 CSIRO homogeneous forest 1D profile in and above				
modeled forest canopy.				
4.2 CSIRO 2D Furry hill Isolated 2D hill covered by				
modeled forest canopy.				
4.3 Bradley's roughness change Smooth <> Rough				
transition in the field.				
WG5 Flow over Mountains	N.A.			



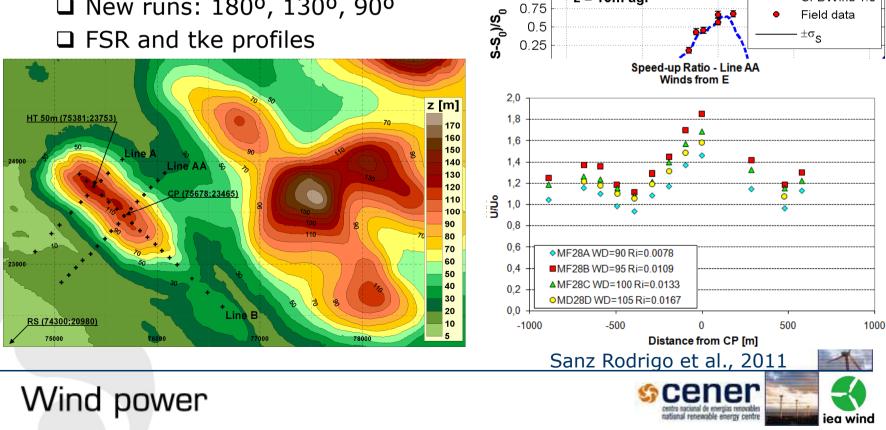
IEA Task 31: WAKEBENCH – Initial benchmarks

Wind turbine wakes	Models	Participants	Misc
WG6 WT Wakes. Theoretical verification 6.1 Theory Self-similar turbulent circular wake (possibly with swirl) 6.2 Theory Infinite wind farm			
WG7 WT Wakes. Wind tunnel experiments 7.1 University of Minnesota Single or multiple turbines with different stability			
WG8Small wind farms / Individual WT8.1 Sexbierum Single WT in flat terrain and neutralatmosphere	WASP		
WG9 Large wind farms 9.1 Lillgrund Offshore, 48x2.3MW, 3.3Dx4.3D, gap in the middle	FUGA		


۲

- Basic working group for any wind farm model since it includes the physics of the background flow
- Neutral conditions, simulation in empty domains
 Surface layer: Monin-Obukhov
 Atmospheric Boundary Layer

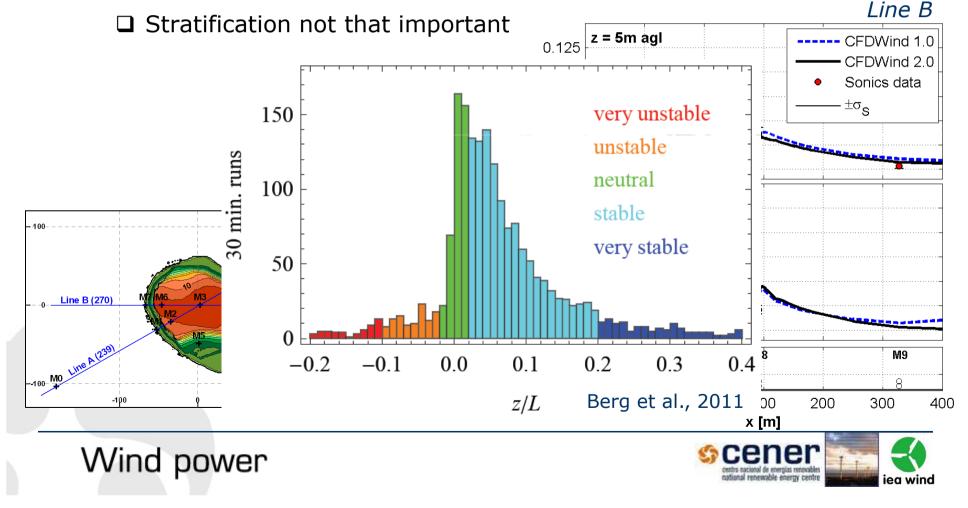
- Basic experiments to study turbulence models
- Model validation at wind tunnel scale
- Isolated and double hills: POSTECH 2D hills in neutral conditions
 Slopes: 0.3 and 0.5; Heights: 4 and 7 cm
 - □ Geometries: Isolated [S3H4, S3H7, S5H4 and S5H7]; Double hills [S3H4-S3H7, S3H7-S3H4, S5H4-S5H7 and S5H7-S5H4]
 - □ Mean profiles of velocity, turbulence and surface pressure


WG3: Flow over hills in the field

٢

CFDWind 1.0

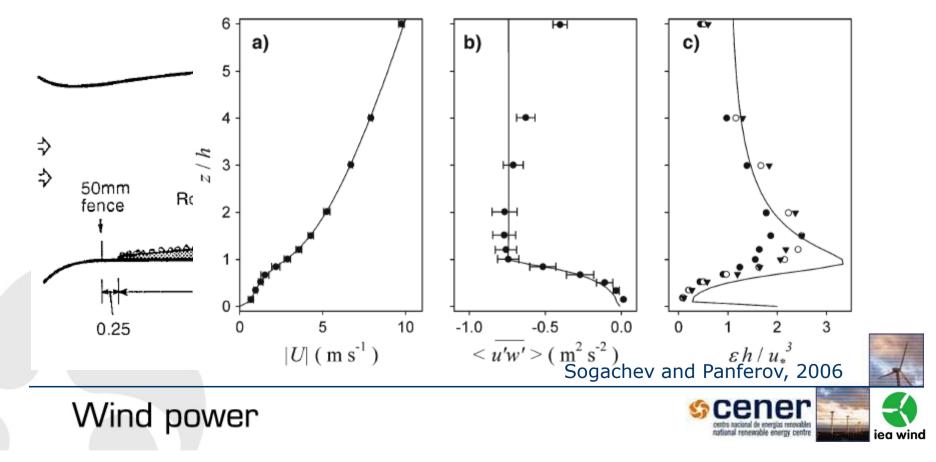
- Connection with wind tunnel experiments to be developed 5
- Askervein (1982-83): \$ □ 210° case: historical reference
 - □ New runs: 180°, 130°, 90°



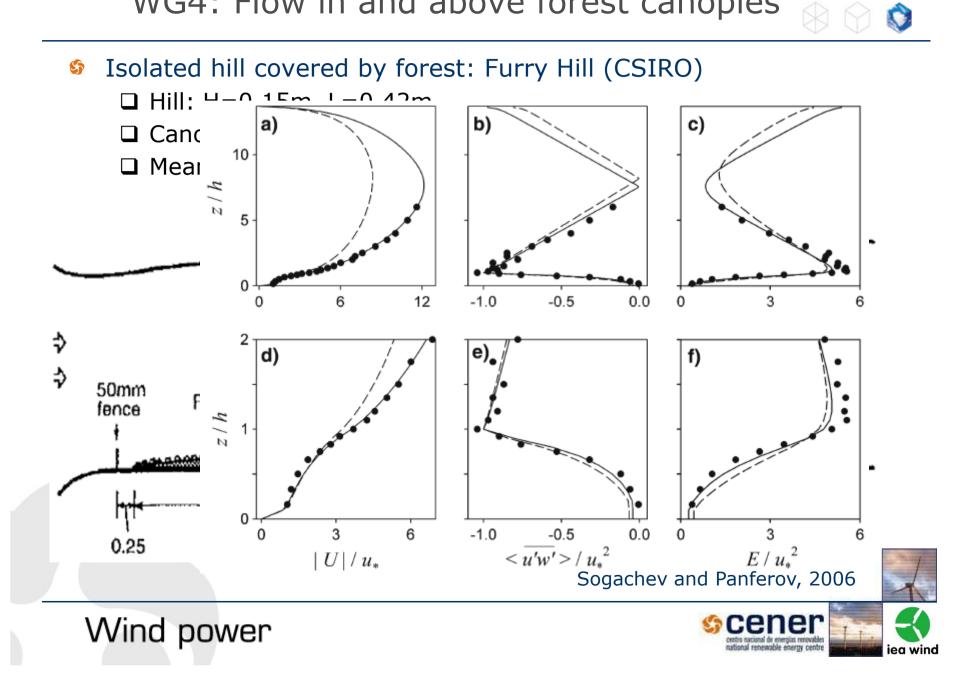
210°, Line AA

z = 10m aql

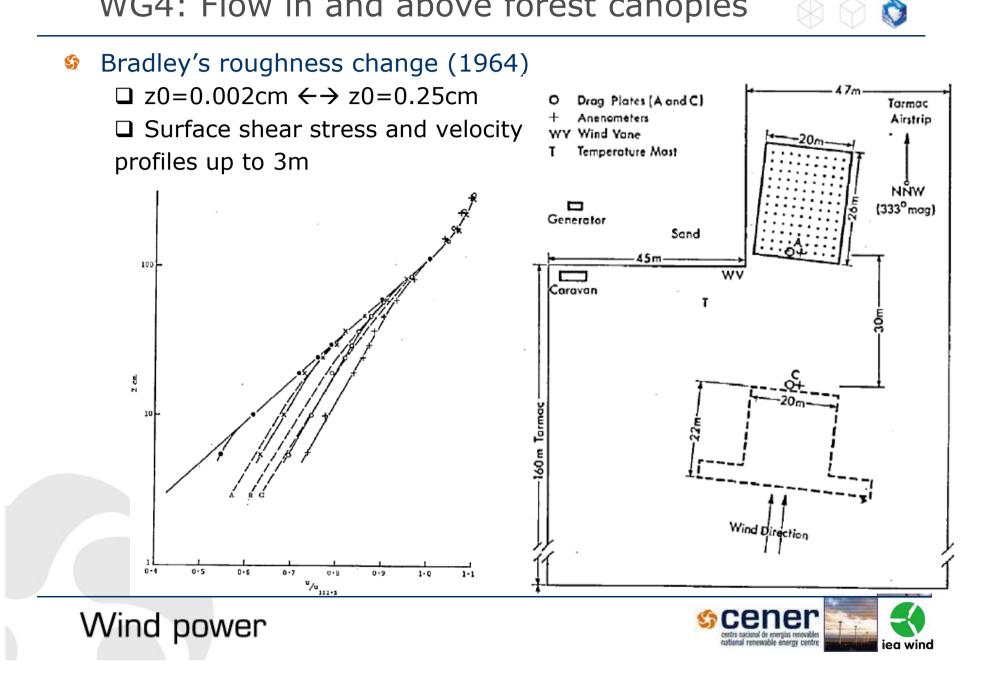
- Solund (2008): latest reference in benchmarking of flow models
 - □ Blind test 2009: simulations can be directly uploaded
 - Revisit the same benchmark runs but now allowing for model calibration based on available measurements


WG4: Flow in and above forest canopies

8 0 🔇


- Solution State State
- SIRO homogeneous wind tunnel forest

□ Waving weat crop model, h=47mm


□ 1D profiles (infinite forest) of velocity and turbulence

WG4: Flow in and above forest canopies

WG4: Flow in and above forest canopies

WG 6 – Theoretical Test Cases

Self similar axisymmetric wake (9/23)

- Does wake model follow trends with downstream distance?
- Width $x^{\frac{1}{3}} \quad \Delta u \sim x^{-(\frac{2}{3})}$
- Infinite wind farm (8/23)
 - Number of rows $1 \rightarrow \infty$
 - At what row does velocity/power deficit asymptote
- **Other Suggestion**
 - Self Similar Turbulent swirling wake

Suggested Test Cases for First 6 months

WG-6 Theoretical

- Self similar axisymmetric wake (possibly with swirl)
 - Does wake model follow trends with downstream distance?
 - Width $x^{\frac{1}{3}} \quad \Delta u \sim x^{-(\frac{2}{3})}$
- Infinite wind farm
 - Number of rows $1 \rightarrow \infty$
 - At what row does velocity/power deficit asymptote

WG-7 Wind Tunnel Tests

University of Minnesota (9/23)

Johns Hopkins (9/23)

University of Orleans and Surrey (8/23)

Chalmers University (6/23)

Other Suggestions

- Wyoming swirling wake
- NREL Phase IV
- MEXICO
- Portland State wind tunnel
- WAUDIT wind turbine wake experiments

Suggested Test Cases for First 6 months

WG-7 Wind tunnel

- University of Minnesota (Chammaro et al. 2009)
- Scale rotating turbines
- Variable atmospheric stability
- Flat terrain

ECN Wieringermeer Test Wind Farm (EWTW) (10/23) NREL TWICS (10/23) Nibe (8/23) Sexbierum (8/23) ECN Scale Wind Farm (ESWF) (8/23) MOD-2 Medicine Bow (5/23) Other Suggestions

- Risø Nordtank
- Risø NM80
- Generic Model Comparison

Suggested Test Cases for First 6 months

WG-8 Individual and Small Wind Farms EWTW and TWICS most popular, but may be IP issues Sexbierum

- Onshore flat terrain, Neutral ABL
- Wakes of one or two 300kW tubrines
- 30m diameter, 35 hub height
- Masts at -2.8D, 2.5D, 5D and 8D

Generic model development

- Tuning of important properties, relative to known cases at different scales
- Sensitivity to turbine properties
- Identify bias from "real" configurations relative model comparison just

Egmond aan Zee (12/23) Lillgrund (12/23) Nysted (11/23) Horns Rev (10/23) CWEX 11/12 (10/23) UpWind Complex Terrain (9/23) Middlegrunden (9/23) Vindeby (9/23) San Gorgonio (5/23) Other Suggestion

• UpWind Complex Terrain 2

Suggested Test Cases

WG-9 Large Wind Farms

- Lillgrund (Dhalberg and Thor 2009)
 - Offshore
 - 1 met tower
 - 48x2.3 MW Siemens machines
 - Close spacing
- Possible delay for IP clearance (true for all large farms)
- Or use scaled generic model instead