Experimental and Numerical study of Wake to Wake Interaction in Wind Farms

Ewan Machefaux

Supervision: Niels Troldborg Gunner Larsen Jakob Mann Helge Madsen

Summary

- 1. Experimental approach
- 2. Numerical approach
- 3. Comparison results and discussion
- 4. Future work

1 - Experimental approach: Tjæreborg site

- Tjæreborg EU-TOPFARM full scale LIDAR based measurements campaign
 - Several hours of single, half and full wake situations recorded in 2009
 - WT3 LiDAR mounted

1 - Experimental approach: wake resolving

- CW Focus LiDAR System adapted, 348 Hz
- Methodology for wake resolving:
 - 1. Computation from Doppler Spectra to line-of-sight velocity Vlos
 - 2. Filtering of erroneous measurements
 - Discretization: 2 x 10 m² (cell center in red)
- 4. Additional correction for laser beam tilt and pan angles

Correction for tilt and pan of laser beam

Measurement volume

1 - Experimental approach: test cases

DTU

2 double wakes investigated

Site measurements	WT2-WT3	WT4-WT3
Wind speed [m/s]	8.50	7.24
Shear coef. [-]	0.14	0.08
Inflow turbulence level [-]	0.05	0.03
RPM upstream [-]	15.00	15.90
RPM downstream [-]	13.15	12.22
Turbine separation [m]	446 ≈5.5D	246 ≈3D
LiDAR Focus distance [m]	200	200

Selection criteria

\rightarrow Low turbulence level

12

Met mast measurements

Power law fit at v= 0.14 ,atmospheric stability is unstable

 \rightarrow Neutral atmospheric stability (based on temp. measurement and Obukhov length)

 \rightarrow Ensure perfect wind alignment by plotting average wind direction for 3 heights

- \rightarrow Moderate wind for high thrust
- \rightarrow Low yaw misalignment (assumed)

2 – Numerical approach: computational set up

Numerical set up

- EllipSys3D flow solver [2]
- Rotor modeled using Actuator Line Technique [3]
- LES turbulent model
- Atmospheric boundary layer modeled in 2 parts:
 - shear: steady body forces computed and applied in the entire domain
 - synthetic turbulent fluctuations inserted in a cross section upstream of the rotor [4]
- 2 grids (3.98M & 2.95M cells)

- [2] N. N. Sørensen and W. Z. Shen. General purpose flow solver applied to flow over hills, PhD Thesis, Risø National Laboratory. *Wind energy*, 1995.
- [3] J. N. Sørensen and W. Z. Shen. Numerical modeling of Wind Turbine Wakes, Fluids Engineering, Vol 124, Issue 2. *Wind energy*, 2002.
- [4] J. Mann. The spatial structure of neutral atmospheric surface-layer turbulence. *Journal of fluid mechanics*, pages 273, 141–168, 1994.

2 – Numerical approach: computational grid

Non uniform Cartesian grid (4th grid level shown of larger grid)

Size: (Lx,Ly,Lz)=(24R, 24R, 37.4R)= (960m, 960m, 1496m)

 \rightarrow Unsteady computations until 10 minutes flow field statistic can be extracted

3 – Results: case 1

Merged wake at 2.5D downstream and \approx 5.5D turbine spacing

Streamwise wake velocity at hub height

Streamwise wake turbulence level at hub height

Sensitivity analysis:

- · uncertainty on real free stream velocity
- computations at measured parameters inconsistent in terms of power produced
- offset in the yaw sensor of more than 12 degrees
- RPM sensor of upstream turbine: integer format

TI $[\%]$; U0 $[m/s]$;	Rel.	Rel.	Rel.
RPM [-]	error	error	error
	$\mathbf{WT4}$	WT3	power
	[%]	[%]	ratio [%]
$5\%; 8.5 \mathrm{m/s}; 15$	13.20	18.34	5.92
(measured)			
$10\%; 8.5 \mathrm{m/s}; 15$	5.52	35.16	31.37
5%; 7.0 m/s; 15	56.03	47.60	5.41
5%; 7.0m/s; 17	47.04	34.74	8.37
$5\%; 8.5 \mathrm{m/s}; 17$	9.14	19.10	10.97
$5\%; 8.0 \mathrm{m/s}; 15$	2.84	3.43	6.09

$$\epsilon = 100 \cdot \left| \frac{P_{EllipSys3D} - P_{meas}}{P_{EllipSys3D}} \right|$$

3 – Results: case 1

Merged wake at 2.5D downstream and ≈5.5D turbine spacing

Streamwise wake velocity

of March 2012

3 – Results: case 2

Merged wake at 2.5D downstream and ≈3D turbine spacing

DSF FlowCenter meeting 6th of March 2012

4 – Conclusions (1)

DTU

Analysis from Tjæreborg experiment:

• Good agreements on organized flow structure part of the wake

... but limitations

• Analysis restricted to average quantities due to limitation in time and spatial resolution in the measured wake

• Uncertainties on the inflow

• Analysis only in the fixed frame of reference and at one downstream cross section

Future work

• Add comparison with the DWM model using assumptions on merging wake

• New merged wake experiment

4 -Future merged wakes experiment FlowCenter Spring 2012

-20

-40^{-L}

100

80

60.

40

20

0.

-20

-40

-60

-80

-100

-10 -20

0

-30

-40

-30

-40 * 40

30

20 10

4 – Conclusions (2)

DTU

Future experiment:

• turbulence content, meandering, expansion and recovery of the wake can be investigated

- several plane can be scanned at a time
- the use of 2 LiDARS will enhance knowledge of the inflow to the downstream turbine

Questions?

Thanks for your attention