Comparison of wind profiles and WRF at Høvsøre

Rogier Floors

flow center meeting

November 7, 2011

Risø DTU National Laboratory for Sustainable Energy

Rogier Floors (flow center meeting)

Wind profiles and WRF

Objective

Introduction

Can WRF model the wind profile at Høvsøre?

- Does WRF present the dimensionless wind profile well (i.e. u_{*0} and the shape)?
- Does an increased resolution improve model performance?

Introduction

Can WRF model the wind profile at Høvsøre?

- Does WRF present the dimensionless wind profile well (i.e. u_{*0} and the shape)?
- Does an increased resolution improve model performance?

Methods

- WRF v3.3
- Leosphere Windcube 70
- Model 2 periods in autumn 2010

Methods

- WRF v3.3
- Leosphere Windcube 70
- Model 2 periods in autumn 2010

Methods

- WRF v3.3
- Leosphere Windcube 70
- Model 2 periods in autumn 2010

WRF v3.3 - Physics

WRF v3.3 - Physics

- Noah land surface scheme
- Thompson microphysics scheme
- RRTM longwave radiation
- Dudhia shortwave radiation
- New Kain-Fritsch cumulus scheme

WRF v3.3 - PBL schemes

Inputs:

- Mean profiles
- Surface fluxes

- Tendencies of T, Q_V , Q_C , Q_i , U, V
- Energy variable (TKE)
- Diagnostic variables

WRF v3.3 - PBL schemes

Inputs:

- Mean profiles
- Surface fluxes

- Tendencies of T, Q_V , Q_C , Q_i , U, V
- Energy variable (TKE)
- Diagnostic variables

WRF v3.3 - PBL schemes

Inputs:

- Mean profiles
- Surface fluxes

- Tendencies of T, Q_V, Q_C, Q_i, U, V
- Energy variable (TKE)
- Diagnostic variables

WRF v3.3 - PBL schemes

Inputs:

- Mean profiles
- Surface fluxes

- Tendencies of T, Q_V, Q_C, Q_i, U, V
- Energy variable (TKE)
- Diagnostic variables

WRF v3.3 - PBL schemes

Inputs:

- Mean profiles
- Surface fluxes

- Tendencies of T, Q_V, Q_C, Q_i, U, V
- Energy variable (TKE)
- Diagnostic variables

WRF v3.3 - PBL schemes

$$\frac{\partial U}{\partial t} + \dots = -\frac{\partial}{\partial z} \overline{u'w'} = \frac{\partial}{\partial z} \left(K_m \frac{\partial U}{\partial z} \right)$$

YSU (first order)

•
$$\frac{\partial}{\partial z} \left[K_m \left(\frac{\partial U}{\partial z} - \gamma_c \right) - \overline{u'w'}_b \left(\frac{z}{b} \right)^3 \right]$$

•
$$K_m = x w_s z \left(1 - \frac{z}{b}\right)^2$$

•
$$w_s = (u_*^3 + \phi_m x w_{*b}^3 z/b)^{1/3}$$

MYNN (1.5 order)

•
$$K_m = l\sqrt{e}S_c$$

- *e* is given by a prognostic TKE equation
- *l* is a master length scale for the entire boundary layer

WRF v3.3 - Domain

Horizontal resolution: 18, 6, 2 km

Rogier Floors (flow center meeting)

Wind profiles and WRF

Observations

Leosphere WindCube 70

Wind speed at 100 m

Roughness calculated based on Monin-Obukhov similarity theory

- $\frac{U}{u_*} = \frac{1}{x} \ln\left(\frac{z}{z_0}\right) \psi\left(\frac{z}{L}\right)$
- All measured at Høvsøre at 10 m, except for *z*₀
- Climatological mean for 2004-2011

Methods Roughness at Høvsøre

Roughness in WRF

Longitude

WRF v3.3 - Model runs

WRF		
Model run	Abbreviation	No. vertical levels
		(within range of lidar)
MYNN	M ₄₁	41 (8)
MYNN	M ₆₃	63 (22)
YSU	Y ₄₁	41 (8)
YSU	Y ₆₃	63 (22)
MYNN	MC_{41}	41 (8)
Observations		
Data source		Vertical levels
Cup	С	10, 40, 60, 80
		100, 116.5, 160
Sonic	S	10
Lidar	L	100 – 600 (50 m interval)

Results

Time series

Time series for Sep - Oct

Rogier Floors (flow center meeting)

Wind profiles and WRF

Results V

Wind profiles

Wind profiles Sep - Oct

Rogier Floors (flow center meeting)

Results Win

Wind profiles

Dimensionless wind profiles Sep - Oct

- surface wind relatively accurate, large under prediction higher up
- u_* very high (factor 1.5)
- resolution has little effect, YSU less shear at higher levels

Results Win

Wind profiles

Dimensionless wind profiles Sep - Oct

- surface wind relatively accurate, large under prediction higher up
- u_* very high (factor 1.5)
- resolution has little effect, YSU less shear at higher levels

Results Win

Wind profiles

Dimensionless wind profiles Sep - Oct

- surface wind relatively accurate, large under prediction higher up
- u_* very high (factor 1.5)
- resolution has little effect, YSU less shear at higher levels

Wind profiles Sep - Oct

Easterly winds in september: very stable BL results in LLJ
NWPs enhance mixing in stable conditions

Wind profiles Sep - Oct

- Easterly winds in september: very stable BL results in LLJ
- NWPs enhance mixing in stable conditions

Wind profiles Sep - Oct

• Westerly winds in October: warm air advection over colder land causes stable conditions at surface.

Results

Low Level Jets

Time series for Sep - Oct

Rogier Floors (flow center meeting)

Wind profiles and WRF

Low Level Jets in September

Mean dimensionless wind profiles at times with a low-level jet in the observations.

- WRF models surface winds relatively well, but shows large bias at larger heights
- Reducing roughness improves slightly improves results between 40 200 m
- Most of the under prediction result of predominant stable condition: enhanced mixing prevents WRF from modelling LLJ's
- Stable conditions in second period have different cause: bias lower

- WRF models surface winds relatively well, but shows large bias at larger heights
- Reducing roughness improves slightly improves results between 40 200 m
- Most of the under prediction result of predominant stable condition: enhanced mixing prevents WRF from modelling LLJ's
- Stable conditions in second period have different cause: bias lower

- WRF models surface winds relatively well, but shows large bias at larger heights
- Reducing roughness improves slightly improves results between 40 200 m
- Most of the under prediction result of predominant stable condition: enhanced mixing prevents WRF from modelling LLJ's
- Stable conditions in second period have different cause: bias lower

- WRF models surface winds relatively well, but shows large bias at larger heights
- Reducing roughness improves slightly improves results between 40 200 m
- Most of the under prediction result of predominant stable condition: enhanced mixing prevents WRF from modelling LLJ's
- Stable conditions in second period have different cause: bias lower