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Turbulent scales:

Scale requirements in wind energy
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Models in Wind Turbine Aerodynamics

Available models:

• Blade-Element momentum (BEM) technique

• Vortex line / Vortex lattice modelling

• Actuator disc / Actuator line technique

• Computational Fluid Dynamics (CFD)

Remark: All models have their individual advantages 
and disadvantages!
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Blade Element Momentum Model
Basic ingredients of the BEM model:

• Based on 1-D momentum theory assuming annular independency

• Loading computed using tabulated static airfoil data

• Dynamic stall handled through ’dynamic stall’ models

• 3-dimensional stall introduced through modifications

• Tip Flows based on (Prandtl) tip correction

• Yaw  treated through simple modifications

• Heavily loaded rotors treated through Glauert’s approximation

• Wakes and park effects  modelled using axisymmetric momentum 
theory
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Blade Element Momentum Model
Advantages of using the BEM model:

The BEM model is today the industrial standard used by all
producers of wind turbines and wind turbine blades 

• Extremely fast on a PC

• Can in principle cope with all flow situations

• Easy to couple with an aeroelastic conde, such as Flex

• Easy to couple with turbulent inflow model

• Many years of experience in using the model

• Performs very well at design conditions

• Capable of delivering results at off-design conditions
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Blade Element Momentum Model
Why not just continue with BEM codes:

Thus, there is also a need for looking into more advanced models

• Aerofoil Aerodynamics based on measurements

• Dynamic stall based on phenomenological models

• 3-dimensional stall based on empirical /scaling relations

• Tip Flows  modelling questionable

• Yaw modelling not based on rigorous physics

• Heavily loaded rotors intrinsically unsteady

• Wakes and park effects only crudely modelled 
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Vortex line/lattice models

Basics of the models:

• Vortex structures substituted by filaments or panels

• Velocity field determined from Biot-Savert integral

• Location of panels are either fixed or free

• The flow field is incompressible, inviscid and irrotational

• The lifting surfaces are thin 

• The angle of attack is small, i.e. small angle approximation

• The method may be generalized by coupling it to the viscous 
boundary layer
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Vortex structures in the wake of a rotor

Stable vortex system Unstable vortex system
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Vortex line/lattice models

Biot-Savart induction law:
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Models of vortex systems 
behinds rotors

Gray (1955) Circulation redistribution by rolling up 
the vorticity sheet around the tip vortex 
(Landgrebe, 1972)
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Vortex line/lattice models

Fixed wake analysis:

Without expansion With expansion
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Vortex line/lattice models

Free wake analysis:

The flow field tend to become chaotic 
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Actuator disc models

Basic elements of the model:

• Flow governed by Euler or Navier-Stokes equations 

• Influence of rotor introduced through body force

• Body forces determined from blade element theory 
using tabulated airfoil data

rΩ
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Actuator disc models
Airfoil data and body forces:
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Actuator disc models

Axisymmetric case with constant loading:
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Actuator disc models

Axisymmetric cases with constant loading:

Wind turbine state Vortex ring state

Hover state Propeller state
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Actuator disc models

Wake states:
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Wake ekspansion, tip-strømlinje
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CFD: The Numerical Wind Tunnel

Basic Elements

• Discretization technique

• Mesh generation

• Turbulence/transition modelling

• Efficient computing algorithms

• High-performance computers

• Post-processing facilities 
(Validation)
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CFD: The Numerical Wind Tunnel
Discretization techniques

• Finite difference

• Finite volume

• Finite Element

• Spectral

• Spectral element

• Vortex particle
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The Finite Volume Method

• Advantages
– Can be used on any type of grids
– Easy to understand and program
– It has a physical meaning for all discretized terms (Fluxes)

• Disadvantage: 
- Difficult to extend to

higher orders 
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Mesh generation

– Structured grid

– Block-structured grid

– Unstructured grid
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CFD: The Numerical Wind Tunnel
Turbulence modeling

• 0-Equation models: Prandtl, Cebei-Smith, Baldwin-Lomax

• 1-Equation model: Spalart-Allmaras, Baldwin-Barth

• 2-Equation model: K-Epsilon, K-Omega, K-Omega SST

• Reynolds stress models

• Sub-grid scale models (LES)

• Combining LES and RANS: Detached Eddy Simulation
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Transitional flow Fully turbulent flow

CFD: The Numerical Wind Tunnel
Transition modeling



Department of Mechanical Engineering
Technical University of Denmark

Validation: CFD and Experiment
Experimental

Numerical
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EllipSys3D
Developed in collaboration between DTU and Risø

• Incompressible Navier-Stokes, 2D and 3D

• Block structured – Multi block / Multi grid

• Parallelized using MPI – Up to 50 million  
mesh points possible today

• Turbulence models: K-ε, K-ω, DES, LES, 3D 
Transition

• Yggdrasil (DTU): 210 CPU’s
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The Numerical Wind Tunnel (EllipSys)
Developed in close collaboration between DTU and Risø 
with the aim of:

• Optimizing rotors with respect to performance and noise

• Analysing existing designs

• Verification of simple engineering models

• Gain physical understanding
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The Numerical Wind Tunnel
Wind Turbine Aerodynamics:
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NASA Ames Tunnel (24.4x36.6 m)
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Pressure Distributions at 10 m/s
(Courtesy: Niels N. Sørensen, Risø)
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Aerodynamic Computations
Requirements for Direct Navier-Stokes computations:

Smallest turbulent length scale: ℓ
Largest geometrical length scale: L

Reynolds Number:  Re=L ∙U/ν , 
where 

L: Length of object
U: Typical velocity
ν: Kinematic viscosity

Estimate based on scales: 
L/ ℓ ≈ Re**(3/4)

Number of mesh points: N ≈ (L/ ℓ)**3 = Re**(9/4)

Typically Re = O(10**6) - O(10**7), thus N = O(10**15)

Computing performance is generally 10-doubled every 5 years, hence 
full DNS simulations can be anticipated in about  (15-8) x 5 = 35 years.
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Rotor Aerodynamics
CFD models

• Viscous-Inviscid Interaction (VII)

• Reynolds Averaged Navier-Stokes (RANS)

• Unsteady Averaged Navier-Stokes (URANS)

• Detached Eddy Simulation (DES)

• Large Eddy Simulation (LES)

• Actuator Disc/Line - LES (AD/L-LES)
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Airfoil aerodynamics:

Aerodynamic Computations

No. Mesh
points

CPU-time Range of 
applicability

Comments

VII O(100) < 10s 2D- steady Stall not well
captured

RANS O(10**5) < 1h 2D-steady - do -

URANS O(10**6) < 10h 2D-unsteady - do -

DES O(10**7) < 1-2 days 3D-unsteady Deep stall not 
well captured

LES O(10**7) < 1 week 3D-unsteady Deep stall not 
well captured

LES O(10**8) < 1 month 3D-unsteady Full polar
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Rotor aerodynamics:

Aerodynamic Computations

No. Mesh
points

CPU-time Comments

BEM O(50) < 0.1 s Based on
airfoil data

Lifting Line O(10**4) < 1 min - do -

Lifting Surface O(10**6) < 10 h Inviscid

RANS O(10**6) < 10 h Stall not well
captured

URANS/DES O(10**8) < 1 week Deep stall not 
well captured

LES O(10**15) N/A Full polar
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Wakes and clusters:

Aerodynamic Computations

No. Mesh
points

CPU-time Comments

PNS O(10**6) < 1h Both axisymm. and 3D

AD-NS O(10**5) < 1h Polar coordinates

RANS O(10**7) < 10h Steady

DES O(10**9) < 1 month 3D-Unsteady

AL-LES O(10**8) < 1 week Airfoil data required

LES O(10**18) N/A 3D-unsteady
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