Numerical Modelling and Scales in Wind Power

Jens N. Sørensen

Department of Mechanical Engineering (MEK) Technical University of Denmark

DTU

Scale requirements in wind energy

Turbulent scales:

	Length scale (m)	Velocity scale (m/s)	Time scale (s)
Airfoil boundary layer	10^{-3}	10 ²	10^{-5}
Airfoil	1	10^{2}	10^{-2}
Rotor	10^{2}	10	10
Cluster	10^{3}	10	10^{2}
Wind farm	10^{4}	10	10^{3}

Models in Wind Turbine Aerodynamics

Available models:

- Blade-Element momentum (BEM) technique
- Vortex line / Vortex lattice modelling
- Actuator disc / Actuator line technique
- Computational Fluid Dynamics (CFD)

Remark: All models have their individual advantages and disadvantages!

Blade Element Momentum Model

Basic ingredients of the BEM model:

- Based on 1-D momentum theory assuming annular independency
- Loading computed using tabulated static airfoil data
- Dynamic stall handled through 'dynamic stall' models
- 3-dimensional stall introduced through modifications
- Tip Flows based on (Prandtl) tip correction
- Yaw treated through simple modifications
- Heavily loaded rotors treated through Glauert's approximation
- Wakes and park effects modelled using axisymmetric momentum theory

Blade Element Momentum Model

Advantages of using the BEM model:

- Extremely fast on a PC
- Can in principle cope with all flow situations
- Easy to couple with an aeroelastic conde, such as Flex
- Easy to couple with turbulent inflow model
- Many years of experience in using the model
- Performs very well at design conditions
- Capable of delivering results at off-design conditions

The BEM model is today the industrial standard used by all producers of wind turbines and wind turbine blades

Blade Element Momentum Model

Why not just continue with BEM codes:

- Aerofoil Aerodynamics based on measurements
- Dynamic stall based on phenomenological models
- 3-dimensional stall based on empirical /scaling relations
- Tip Flows modelling questionable
- Yaw modelling not based on rigorous physics
- Heavily loaded rotors intrinsically unsteady
- Wakes and park effects only crudely modelled

Thus, there is also a need for looking into more advanced models

Vortex line/lattice models

Basics of the models:

- Vortex structures substituted by filaments or panels
- Velocity field determined from Biot-Savert integral
- Location of panels are either fixed or free
- The flow field is incompressible, inviscid and irrotational
- The lifting surfaces are thin
- The angle of attack is small, i.e. small angle approximation
- The method may be generalized by coupling it to the viscous boundary layer

Vortex structures in the wake of a rotor

Stable vortex system Unstable vortex system

Vortex line/lattice models

Biot-Savart induction law:

DTU

Models of vortex systems behinds rotors

DTU

Vortex line/lattice models

Fixed wake analysis:

Without expansion

With expansion

Vortex line/lattice models

Free wake analysis:

The flow field tend to become chaotic

Technical University of Denmark

Actuator disc models

Airfoil data and body forces:

$$\phi = \tan^{-1} \left(\frac{V_n}{\Omega r - V_{\theta}} \right), \quad \alpha = \phi - \gamma$$

$$V_{rel}^2 = V_n^2 + (\Omega r - V_{\theta})^2, \quad V_n = V_z$$

$$\left\{ \begin{array}{l} \mathbf{L} \\ \mathbf{D} \end{array} \right\} = \frac{1}{2} \rho V_{rel}^2 cB \left\{ \begin{array}{l} C_L(\alpha, \operatorname{Re}) \mathbf{e}_L \\ C_D(\alpha, \operatorname{Re}) \mathbf{e}_D \end{array} \right\},$$

$$F_z = L \cos \phi + D \sin \phi, \quad F_{\theta} = L \sin \phi - D \cos \phi$$

$$F_n$$

$$-\theta$$

$$V_n$$

DTU

Actuator disc models

Axisymmetric case with constant loading:

Actuator disc models

Axisymmetric cases with constant loading:

Wind turbine state

Vortex ring state

Propeller state

Technical University of Denmark

Wake ekspansion, tip-strømlinje

DTU

CFD: The Numerical Wind Tunnel

Basic Elements

- Discretization technique
- Mesh generation
- Turbulence/transition modelling
- Efficient computing algorithms
- High-performance computers
- Post-processing facilities (Validation)
 Danmarks Tekniske Universitet

CFD: The Numerical Wind Tunnel

Discretization techniques

- Finite difference
- Finite volume
- Finite Element
- Spectral
- Spectral element
- Vortex particle

The Finite Volume Method

- Advantages
 - Can be used on any type of grids
 - Easy to understand and program
 - It has a physical meaning for all discretized terms (Fluxes)
- Disadvantage:
 - Difficult to extend to higher orders

Mesh generation

- Structured grid
- **Block-structured grid**

Fig. 2.1. Example of a 2D, structured, non-orthogonal grid, designed for calculation of flow in a symmetry segment of a staggered tube bank

[ΠŁ	Ш	ΠT	Ш	ΠF	Ш	Ш	Ш	Ш	m	m	П	T	ΠÏ	П	Ш	Π	Ш	11	П	Ш		П	П	-	ł	т	Т		<u> </u>	Т			Т	 	
				1.0	Ц	U	Ш	Ш	Ш	ΤП	Ш		Π	E		Т	Ш		П	П	П	П	П	Ш		Π	П		1		Τ.			Τ.			Т		
			1.	1.1.1	ШΣ	ц.,	Ш	III.	Ш		Ш	r I	П	П	Π	Ш	Ц.	П	Ш	П	Ш	Ш	П	Ш			П	1									Т		
			1.	ш	ш.		ш	Ш	ш	ш	Ш	Ш	П	Ш	Н.		ш	п	[]]	Ш	Ш	ш	Ш	Ш	Ш						1						1		
			11	ш	Ш.	14	111	ш	Щ	Щ	Ш	ш	11	Ш	ш	Ш	11	Ш	11	1	T	E	п	ш	Π.		. 1						_				1		[
			1.	цμ	щ	ш	ΩL	щ	Щ	ш	11	Ц	1		11	Ш	Ш	Ш		Ł	1	Ľ.	Ш	11	11												T	 	
		<u> </u>	н	773	<u>ст</u>		++	1	H.	H	÷	H	H.	н	Ŀ.	±±	H۵	11	Ħ	#	#	H	æ	ш	Ħ	╋	⊢	+		+	+		÷	+-			+	 ·	
	<u> </u>		H.	\mathbf{n}	93.5			20	H		H.		H	H	1			扫		æ	H				÷		Ľ		1		1			1			Ŧ		
			th	ΗE				-		10	錐		ш					1		1					н.	╟	H	÷	+	+	-		_	+-			-t-	 	
			E	FŁŧ										1					÷		1			H	5						1			1				(Ĺ
	have a share			60	<i>##</i>	76	71	-	Ħ	曲	Ħ		щ				ΕĒ		Ŧ	ŧ.			H			-	н	+	+	Ŧ	+	-		+			+-	 	l
		⊢ \	$+\nu$	νz	777	tΗ	tt	t.t.	tθ	н			Ŧ	1	Ŧ	-	Ħ	*	H	H	#	н	æ		H	ł	1		-	Ŀ			ŀ	1			+	 	+
		┝╌╄	++	"	47	TT	Η.	ΨP	Ŧ		н	Ŧ	Ŧ	н	Ŧ	-	H	Ŧ	H	#	-	H	15	-	H	н-	н	-	+	+	+			T.			7		
			Ð	HH	₩	Hf		HH	₩	н	H	Hł	÷	Hf	łł	₽	H	н	н	H	н	н	н	н	н	┢╋╍	н	+	+	+	+	-	-	+	-		+		
		<u> </u>	₽	htt	╈	H+		ŧΗ	H	н	Ħ	Ht	tt	H	Ħ	Ħ	H	tt i	HI	Ħ	Ħ	H	ŧH	H	H	╋	┢╋	+	+	╈	+	-	_	+		_	+	<u> </u>	·
			ш	ВH	₩	ΗH	111	Ħt	Ħt	н	Ħ	Ht	th	H	Ħ	Ħ	H	Ħ	н	Ħ	Ħ	ы	m	H	H	H	H	╈	+	╈	+	-		+-	_		+	ŀ	
			Ŧ	п	T	T	111	Ħt	m	ш	Ħ	Ħ	t	Itt	th	T	11	tti	Ht	tt	tt	m	Ħ	ш	Ħ	٣	rt		÷	+	+			+			+	<u> </u>	
			т		Ш		Ш	Π.	ПГ		Т	П	π	П	m	T	П	11	m	π	П	Ш	T	Ш	П	H-	П	Т		Т							1.		

to calculate flow around a cylinder in a channel

Fig. 2.3. Example of a 2D block-structured grid which does not match at interfaces, Fig. 2.2. Example of a 2D block-structured grid which matches at interfaces, used designed for calculation of flow around a hydrofoil under a water surface

CFD: The Numerical Wind Tunnel

Turbulence modeling

- 0-Equation models: Prandtl, Cebei-Smith, Baldwin-Lomax
- 1-Equation model: Spalart-Allmaras, Baldwin-Barth
- 2-Equation model: K-Epsilon, K-Omega, K-Omega SST
- Reynolds stress models
- Sub-grid scale models (LES)
- Combining LES and RANS: Detached Eddy Simulation

CFD: The Numerical Wind Tunnel

Transition modeling

Transitional flow

Fully turbulent flow

Validation: CFD and Experiment

Experimental

UTU

EllipSys3D

Developed in collaboration between DTU and Risø

- Incompressible Navier-Stokes, 2D and 3D
- Block structured Multi block / Multi grid
- Parallelized using MPI Up to 50 million mesh points possible today
- Turbulence models: K-ε, K-ω, DES, LES, 3D
 Transition
- Yggdrasil (DTU): 210 CPU's

The Numerical Wind Tunnel (EllipSys)

Developed in close collaboration between DTU and Risø with the aim of:

- Optimizing rotors with respect to performance and noise
- Analysing existing designs
- Verification of simple engineering models
- Gain physical understanding

The Numerical Wind Tunnel

Wind Turbine Aerodynamics:

NASA Ames Tunnel (24.4x36.6 m)

Pressure Distributions at 10 m/s

(Courtesy: Niels N. Sørensen, Risø)

Requirements for Direct Navier-Stokes computations:

Smallest turbulent length scale: ℓ Largest geometrical length scale: L

Estimate based on scales: L/ $l \approx \text{Re}^{**}(3/4)$ Reynolds Number: $Re=L \cdot U/v$, where

- L: Length of object
- U: Typical velocity
- v: Kinematic viscosity

```
Number of mesh points: N \approx (L/\ell)**3 = Re**(9/4)
```

```
Typically Re = O(10^{**}6) - O(10^{**}7), thus N = O(10^{**}15)
```

Computing performance is generally 10-doubled every 5 years, hence full DNS simulations can be anticipated in about $(15-8) \times 5 = 35$ years.

Rotor Aerodynamics

CFD models

- Viscous-Inviscid Interaction (VII)
- Reynolds Averaged Navier-Stokes (RANS)
- Unsteady Averaged Navier-Stokes (URANS)
- Detached Eddy Simulation (DES)
- Large Eddy Simulation (LES)
- Actuator Disc/Line LES (AD/L-LES)

Airfoil aerodynamics:

	No. Mesh points	CPU-time	Range of applicability	Comments
VII	O(100)	< 10s	2D- steady	Stall not well captured
RANS	O(10**5)	< 1h	2D-steady	- do -
URANS	O(10**6)	< 10h	2D-unsteady	- do -
DES	O(10**7)	< 1-2 days	3D-unsteady	Deep stall not well captured
LES	O(10**7)	< 1 week	3D-unsteady	Deep stall not well captured
LES	O(10**8)	< 1 month	3D-unsteady	Full polar

Rotor aerodynamics:

	No. Mesh points	CPU-time	Comments
BEM	O(50)	< 0.1 s	Based on airfoil data
Lifting Line	O(10**4)	< 1 min	- do -
Lifting Surface	O(10**6)	< 10 h	Inviscid
RANS	O(10**6)	< 10 h	Stall not well captured
URANS/DES	O(10**8)	< 1 week	Deep stall not well captured
LES	O(10**15)	N/A	Full polar

Wakes and clusters:

	No. Mesh points	CPU-time	Comments
PNS	O(10**6)	< 1h	Both axisymm. and 3D
AD-NS	O(10**5)	< 1h	Polar coordinates
RANS	O(10**7)	< 10h	Steady
DES	O(10**9)	< 1 month	3D-Unsteady
AL-LES	O(10**8)	< 1 week	Airfoil data required
LES	O(10**18)	N/A	3D-unsteady