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Basic properties and assumptions
Validity of assumptions

Turbulence for wind turbine load modeling

The purpose is to describe spatial and temporal fluctuations with
relevance for wind turbine load calculations.
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Validity of assumptions

Stationarity and homogeneity

A stochastic process X(t) is completely described in term of all
joint probabilities

p(x1, t1; X2, t2; ...; Xn, tp)  for all n
or equivalently (under some conditions) all moments
(X(t1)X(22).--X(tn))

It is stationary if

p(x1, t1; X2, to; ...; Xn, tn) = p(x1, t1 + t; X2, to + ;... X, tn + )

or

(X(t1)X(t2)...X(tn)) = (X(t1 + t)X(t2 + t).. X(tn + t)) Vt
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Validity of assumptions

Atmospheric time series and stationarity
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Validity of assumptions

Homogeneity

A stochastic field X(x) is homogeneous if
(X(x1)X(x2)...X(xn)) = (X(x1 + r)X(x2 +r)..X(x, + 1))

i. e. “stationary in space.”

RELGLEVEDD]



Validity of assumptions

Homogeneity: Example

Wind direction at three heights (°)

290 ¢ E
280 3
270

260 El
290 ¢ E
280 k!
270 El
260 El

290 ¢
280
270
260 £

35m

29.3m

19.7m

Jakob Mann



Validity of assumptions

A Gaussian variable

\'

The zero mean gaussian variable v is simulated by the Box-Miiller
method.
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Validity of assumptions

An n-dimensional Gaussian variable

p(v) = M exp (; - ov>

v={vi,vo,....vp}, (v)=0
I p1 op2

pr 1 p1
p2 p1 1

Q=R"

V2.V3,..e

Vi

v
is simulated by

Fourier techniques,

essentially treating

the eigenvectors of

R independently.

RELGLEVEDD]



Validity of assumptions

Coordinate systems

Mean wind speed.
Longitudinal fluctuations.
Transversal fluctuations.
Vertical fluctuations.

x;:  Space coordinates.

or Ground
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Validity of assumptions

The logarithmic velocity profile

p Air density (kg/m?3)

7 Frictional force on a unit are of the surface (kg m~!
s72)

z Distance from the surface.

The only combination giving the dimension of velocity gradient is

du T Uy

= _— — 1
az ot \/ pz2 Kz’ (1)
where the friction velocity u, is defined by

_ 2
T = pu;

and k =~ 0.4 is the dimensionless von Kdarmdn constant. Other
turbulence quantities relate to u? = — (uw):

oy ~24u, o,~19u, o, ~1.25u,
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Validity of assumptions

The logarithmic velocity profile

Solving (1) we get
Uy
U(z) = P log (2/20)

where the roughness length z is an integration constant.
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Validity of assumptions

The influence of stability

Stable and unstable flows

A much used parameter in fluid dynamics

g d9/dz

~ T (dU/dz)?’

where © is the mean potential temperature.

In surface layer meteorology the parameter z/L where

Tuf

L= grwhy @)

Ri

is the Monin-Obukhov length, is widely used. Departures from
neutral profiles can, at least close to the ground, be written as
empirical functions of z/L.

The finite height of the boundary layer will limit the linear growth
of the eddy diffusivity making the profile look stable. Analysis of
profiles from Hgvsgre up to 160 m confirm this.
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Basic properties and assumptions

Are homogeneity, stationarity, gaussianity and neutral
atmospheric stratification valid?
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Lack of stationarity at an off-shore location. Wind speed constant
~ 15 m/sin Af =75° in 30 s.
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Basic properties and assumptions

Stationarity?
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Off-shore frontal passage: Au = 19m/s in At, = 60s.
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Basic properties and assumptions

Independence of stability at strong winds?
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Spectra of w from the Great Belt Coherence Experiment. Mean wind
speeds are between 16 and 20 m/s and directions are in a narrow interval
around the South. Dashed spectra have slightly unstable stratification,
gray have stable, and the thin have neutral.
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Basic properties and assumptions

Gaussianity

0.1

0.01 Pdf of instantaneous

velocity differences
between two heights
within the rotor plane.
Smooth  curves are
expectations from
standards.
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Rapid Distortion Theory and the Mann model
Testing the model

Technical preliminaries of the Mann model

Suppose the velocity field is homogeneous.
Taylor's frozen turbulence hypothesis

u(x,y,z,t) =u(x — Ut,y,z0)
Covariance tensor
Rij(r) = (ui(x)uj(x +r))

For r = 0 the diagonal elements of R;j are 02,0
R — 0.

2 2

c,05,. For|r] — o0
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Rapid Distortion Theory and the Mann model
Testing the model

Technical preliminaries of the Mann model

Spectral tensor

(k) = (271)3 / Ry(r) exp(—ik - r)dr

One-dimensional spectrum
1

Filk) = 5- / Rj(x,0,0)e % dx

—00

Cross-spectrum
1 [ .
Xij(ki, Ay, Az) = 27r/ Rij(x, Ay,Az)e_lklxdx
— o0
Coherence

’XU(klvAyvAz)’2
cohji(ki, Ay, Ax) =
ik, By, ) Fi(ki)Fj(k1)
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Rapid Distortion Theory and the Mann model
Testing the model

Symmetries

From symmetries it is possible to determine if some cross-spectra
are real, purely imaginary or zero. The symmetry group of a
turbulent field is the set of all orthonormal transformations T for
which the second order statistics of u;(x) is the same as Tjju;( Tx).
Consequences for the correlation tensor:

Rij(r) = (ui(x)uj(x +r))

<T,'kuk(TX) TJ'/U/(TX + TI’)>
Tic (uk(Tx)uy(Tx + Tr)) Ty
= TuRu(Tr)Tj
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Rapid Distortion Theory and the Mann model
Testing the model

Symmetries

Example
1 0 0
T=1]10 -10
0 0 1
=

R23(X,O,Z) = —R23(X,O,Z) = R23(X,0,Z) =0
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Rapid Distortion Theory and the Mann model
Testing the model

Properties of the spectral tensor

Rii(r) = /CD,-J-(k) exp (ik - r) dk

Rij(r) = Rji(—r) = ®(k) = ®j(k),

where * denotes complex conjugation.

Rij(r) = TiuRu(Tr) Ty < (k) = Tic®p(Tk) T

where * also denotes the adjoint, i.e. in the case of a real matrix
the transpose.
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Rapid Distortion Theory and the Mann model
Testing the model

Incompressibility

V- u(x) = gz —0
& k,u;(k) =0
aarjRij(r) = ;;J (ui(x)uj(x +r)) = <ui(x)68rjuj(x + r)> =0

& kj®ji(k) = 0. This property implies zero direct backscatter of
acoustical beams under neutral stratification.
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Rapid Distortion Theory and the Mann model
Testing the model

Isotropy

All orthonormal transformations T leaves the statistics of the
velocity field u unchanged.

For a moment think of a scalar field (x) and consider the second
order statistics R(r) = (8(x)0(x +r)). Isotropy here implies that
R(r) can only depend on r = |r|.

An isotropic, symmetric second order tensor as the velocity
correlation function can only depend on

djj kikj
We are left with

®ji(k) = f(k)d; + fa(k)kik
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Rapid Distortion Theory and the Mann model

Testing the model

E(k) kik;
®ilk) = 4o <5f - k2J>

where E(k) is half the variance of the wind velocity fluctuations
whose magnitude of the wave vector is in the range (k, k + dk).
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Rapid Distortion Theory and the Mann model
Testing the model

Kolmogorov and von Karman

Kolmogorov (1941) (dimensional analysis) for large k but still
smaller than the wave length corresponding to the viscous scale.

E(k) = ae?/3k>/3
The value of “the spectral Kolmogorov constant” « is ~ 1.7.
Implies
4
Faz(ki) = Fas(ki) = §F11(k1)

as in the |IEC standard.
Isotropy implies 02 = 02 = 02, Also x13 = 0.

Von Karman proposed

(LK)

E(k) = 2/3L5/3
( ) ae (1—|—(Lk)2)17/6
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Rapid Distortion Theory and the Mann model
Testing the model

Navier-Stokes equations and higher order moments

a:@—l—u-Vu:—le—l—l/Vzu
ot p

From this it can be shown (Kolmogorov, 1941) that

4
<(5UH(r)3> = —ger

which is in direct conflict with gaussianity.

RELGLEVEDD]



Description by a spectral tensor

Testing the model

Rapid distortion theory

Rapid distortion theory (RDT) was originally formulated to
calculate turbulence in a wind tunnel contraction.
It was later used to model the response of turbulence to shear.

O£
QeF

=
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Description by a spectral tensor

Testing the model

The basic idea is to divide the flow into a mean and a fluctuating
part. In the Navier-Stokes equations the interaction (or products)
between fluctuating parts are ignored. This allows for a Fourier
transform of the equations, resulting in linear differential equations
with no coupling between wave-vectors.
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Description by a spectral tensor

Testing the model

The Mann model

Symmetry group of the Mann model

1 0 0 -1 0 O
{0 -1 0], 0 1 0 ,—1
0 0 1 0 0 -1
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Description by a spectral tensor

Testing the model

The linearization is unrealistic; stretched ‘eddies’ will break up
(interaction between fluctuations). Equilibrium is postulated where
eddies of size oc |k| ™! are stretched by the shear over a time
proportional to their life time 7. In the inertial subrange

7 o< k=2/3. We introduce a parameter I, such that the
dimensionless life time, 3, can be written as 3 = %T = I'(kL)_g.
A more general model of the dimensionless eddy life time § outside

the inertial subrange is established in Mann (1994).
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Description by a spectral tensor

Testing the model

Evolution of individual wave-vectors:

ko = (ki, k2, k3o) with k3o = k3 + Bki

N
W, Z=

\ 7 z

ky ki

k3
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Description by a spectral tensor

Testing the model

‘Initial condition’ dZ™°(kg) has the statistics of the isotropic von
Kéarman tensor. The sheared tensor is then given by

10 G .
dZ(k)= |0 1 ¢ | dZ™(ke)
0 0 k2/K?
where
=G -kG/k, G=kC/k+ G
with 15 )
k2(kf + K3)
and .
ko k2 ki (k% + k2)2
)= ——20 __rctan —B;(1+2)2 ;
(k? + k3)2 ks — ksoki3
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Description by a spectral tensor

Testing the model

Compared to the isotropic tensor the extra parameter I implies
° 03 > 03 > Ua,
e (uw) <0

@ Length scale of u much larger than w

o* /0%
Linax/L
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Description by a spectral tensor
Rapid Distortion Theory and the Mann model

Comparison with data: Great Belt Coherence Experiment

70m

é 40m |
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Description by a spectral tensor
Rapid Distortion Theory and the Mann model

Comparison with data: Great Belt Coherence Experiment
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Description by a spectral tensor
Rapid Distortion Theory and the Mann model

Spectra and one-point cross-spectra

Spectral densiti;F (k;) [m?s?]

0.001 0.01 0.1 1

Wavenumbek; [m—1]

One 2 hour run.
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Description by a spectral tensor
Rapid Distortion Theory and the Mann model

Wind speedl + u) [m/s]

Time [s]
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Description by a spectral tensor
Rapid Distortion Theory and the Mann model

Normalized two-point cross-spectra: coherences
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Description by a spectral tensor
Rapid Distortion Theory and the Mann model

Average of all neutral runs
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Description by a spectral tensor
Rapid Distortion Theory and the Mann model

Predicted coherences
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Diabatic observations
Extensions to complex terrain

Site and measurements at Hgvsgre

North

e

1000 m ®
()
[
[ ]

Light tower *
[ J

Meteorological
mast

@ 20 Hz Sonics at 10, 20, 40, 60, 80. 100 and 160 m
@ 10-min time series collected for ~1 year
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Turbulence for wind turbine load modeling
Three dimensional turbulence structure Diabatic observations
Extensions to complex terrain
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Hgvsgre site

Extensions to complex terrain

Results: diabatic observations

Obukhov length Atmospheric L Uso Zo z; No. of
interval [m] stability class [m] [m s [m] [m]  10-min data
—100 < L < —50  Very unstable (vu) —74 0.35 0.013 600 397
—200 < L < —100 Unstable (u) —142 0.41 0.012 600 459
—500 < L < —200 Near unstable (nu) —314 0.40 0.012 550 292
|L| > 500 Neutral (n) 5336 0.39 0.013 488 617
200 < L <500 Near stable (ns) 318 0.36 0.012 451 439
50 < L <200 Stable (s) 104 0.26 0.008 257 1144
10< L <50 Very stable (vs) 28 0.16 0.002 135 704
ez — i’;“’ for neutral and stable conditions
c
@ z, from

ORI
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Hgvsgre site

Extensions to complex terrain

Results: Mean wind profiles for various atmospheric
stabilities
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Hgvsgre site

Extensions to complex terrain

Very unstable spectra
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Hgvsgre site

Extensions to complex terrain

Unstable spectra

08 08

0.6 06

0.4] 0.4

0.2 02

-0.2 -0.2

08 08
— 08 — 086 -
w04 w 04 2]
Z z z
02 02
oF
-02 -02
12

RELGLEVEDD]




Hgvsgre site

Extensions to complex terrain

Near unstable spectra
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Hgvsgre site

Extensions to complex terrain

Neutral spectra
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Hgvsgre site

Extensions to complex terrain

Near stable spectra
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Hgvsgre site

Extensions to complex terrain

Stable spectra
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Hgvsgre site

Extensions to complex terrain

Very stable spectra
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Hgvsgre site

Extensions to complex terrain

Mann (1994) model parameters

4 8 10
0?3223y, [
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Hgvsgre site
Diabatic observations

Turbulence in complex terrain

Two complications compared to flat terrain:

@ varying roughness

@ orography
These are incorporated in WAsP Engineering, but only for
moderately complex terrain: The basic limitation:

If there are extended areas within a radius of 3 to 4
km from the site of interest with slopes of more than 20°
to 25°, then turbulence may be much larger than
calculated. In this situation measurements at the site
may be required.

RELGLEVEDD]



Hgvsgre site
Diabatic observations

Really complex terrain
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Hgvsgre site
Diabatic observations

A table mountain in Spain

4,642x10° %

4,641x10°

464x10°

4.639% 10°

4.638x 10°

2 masts and 54 turbines.




Hgvsgre site
Diabatic observations

Stretched a factor of 2
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Hgvsgre site
Diabatic observations

Mast 1: Ratio of between wind speed at lower tip and hub

height
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Hgvsgre site
Diabatic observations

Mast 2: Ratio of wind speed at lower tip and hub height
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Hgvsg e
Diabatic observations

Mast 2: Diff. in wind direction at hub and lower tip height
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Hgvsgre site
Diabatic observations

Instantaneous shears
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Outline of Part Il: Turbulence simulation

@ Recapitulation of Part |

© Simulation methods

@ The Sandia method
@ The spectral tensor method

@ Constrained simulation
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@ Examples
@ Discussion and overall conclusion
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What aspects of the wind are important for a turbine?

@ D ~50-150 m
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@ 0.05 < f <1 Hz and even higher.
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What aspects of the wind are important for a turbine?

e D ~50-150 m
@ Zhyp 50-150 m
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@ time history in one point not enough
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What aspects of the wind are important for a turbine?

o D ~50-150 m

® Zhup ~ 50-150 m

@ 0.05 < f <1 Hz and even higher.

@ time history in one point not enough
°

u, but also v and w.

Jakob Mann



Wind statistics over flat terrain

o Gaussianity often OK, despite (dv|(r)*) = —Zer.
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Wind statistics over flat terrain

o Gaussianity often OK, despite (dv|(r)*) = —Zer.
@ Stationarity often OK
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Wind statistics over flat terrain

o Gaussianity often OK, despite (dv|(r)*) = —Zer.
@ Stationarity often OK

@ Homogeneity often OK, at least in the horizontal.
dU/dz = u,/kz
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Wind statistics over flat terrain

Gaussianity often OK, despite (dv(r)?) = —Zer.
Stationarity often OK

Homogeneity often OK, at least in the horizontal.
dU/dz = u,/kz
Taylor's hypothesis OK for most practical purposes

Jakob Mann



Gauss OK = 2. order statistics is everything

Taylor's frozen turbulence hypothesis
u(x,y,z,t) =u(x — Ut,y,z0)

Need to know: covariance tensor Rjj(r) = (uj(x)uj(x +r)), the
spectral tensor ®;;(k)

or

One-dimensional spectrum F;(k1) = f ° Rij(x, 0,0)e~**dx, and
cross-spectra xj( ki, Ay, Az) or the coherence cohjj(ki, Ay, Ax)
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Sandia/Veers simulation method

@ Uses spectra and coherences to
simulate a mesh of correlated time
series
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Sandia/Veers simulation method

@ Uses spectra and coherences to
simulate a mesh of correlated time

series
@ Choleski decomposition
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Sandia/Veers simulation method

@ Uses spectra and coherences to
simulate a mesh of correlated time
series

@ Choleski decomposition

@ Homogeneity not necessary, but
often assumed.
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Sandia/Veers simulation method

@ Uses spectra and coherences to
simulate a mesh of correlated time
series

@ Choleski decomposition

@ Homogeneity not necessary, but
often assumed.

@ Phases ignored, incompressibility
ignored.

Jakob Mann



The Sandia method

The Mann model

The spectral tensor ®j;(k) is modelled based on
@ Incompressibility k;j®;i(k) =0

RELGLEVEDLD]



The Sandia method

The Mann model

The spectral tensor ®j;(k) is modelled based on
@ Incompressibility k;j®;i(k) =0
@ Linearized Navier-Stokes equations close with “eddy life time”
considerations (Mann, 1994)
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The Sandia method

The Mann model

The spectral tensor ®j;(k) is modelled based on
@ Incompressibility k;j®;i(k) =0
@ Linearized Navier-Stokes equations close with “eddy life time”
considerations (Mann, 1994)
o Small scale isotropy ®;;(k) = ﬂg (k%6i — kikj),
E(k) = ag?/3k=5/3 for k — oc.
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The Sandia method

The Mann model

The spectral tensor ®j;(k) is modelled based on
@ Incompressibility k;j®;i(k) =0
@ Linearized Navier-Stokes equations close with “eddy life time”
considerations (Mann, 1994)

o Small scale isotropy ®;;(k) = ﬂg (k%6i — kikj),

E(k) = ag?/3k=5/3 for k — oc.
@ Large scale anisotropy, o, > o, > o, (uw) <0,
L,>L,> L,
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The Sandia method

The Mann model

The spectral tensor ®j;(k) is modelled based on
@ Incompressibility k;j®;i(k) =0
@ Linearized Navier-Stokes equations close with “eddy life time”
considerations (Mann, 1994)

o Small scale isotropy ®;;(k) = ifl;z (k%6i — kikj),

E(k) = ag?/3k=5/3 for k — oc.
@ Large scale anisotropy, o, > o, > o, (uw) <0,
L,>L,> L,

o Notice: Only three parameters: L, as?/3, and T.
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The Sandia method

Fourier simulation

u(x) = Z eik'xu(k)

where

(ui(k)u; (k")) oc ®j(k)d(k — k')
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The Sandia method

Wind simulation
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Examples
Discussion and overall conclusion

Constrained simulation

Simulate v = {v1, v, ...} provided that >.7 ; pivi = ¢ v = £.
Examples:

@ Gust in the middle of the time series: ¢; =1 for i = n/2 and
zero elsewhere. |.e. the condition is v, » = fc.

Jakob Mann



Examples
Discussion and overall conclusion

Constrained simulation

Simulate v = {v1, v, ...} provided that >.7 ; pivi = ¢ v = £.
Examples:

@ Gust in the middle of the time series: ¢; =1 for i = n/2 and
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Examples
Discussion and overall conclusion

Constrained simulation

Simulate v = {v1, v, ...} provided that >.7 ; pivi = ¢ v = £.
Examples:
@ Gust in the middle of the time series: ¢; =1 for i = n/2 and
zero elsewhere. |.e. the condition is v, » = fc.
@ Velocity jump over 5 time steps: ¢; = —1 and ;5 = 1. The
condition is ujy5 — u; = f..
© Choose ¢ to match time scales in the control system.

Jakob Mann



Examples
Discussion and overall conclusion

Constrained simulation

Most probable v:
. 1
Minimize —v- Qv
subject to p-v="f,
The solution is the “average gust” v,ye:

f-Ryp
¢ Ry

Vave =

Ex: In the continuum limit suppose ¢(t) = d(t). Then

vave(t) = (V(B)V(0) = £) = " R(2)

_02
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Examples
Discussion and overall conclusion

Constrained Gaussian simulation

To simulate v under the constraint ¢ « v = f.:

© Simulate stationary vs = {vs1, Vs2, ...} with no constraints.
@ calculate

fC—Qa'vs

V=V +
¥Ry

Ry

v fulfils the constraint ¢ - v = f. and is generated at the right rate.
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Mathematical basis

Discussion and overall conclusion

Example: “Velocity gust”

The stationary gaussian turbulence v is simulated assuming a von
Karman spectrum. The correlation R is derived from this spectrum.

6 L
— 4
[
e 2
50
-2 F
20 40 60 80 100 120
time[s]

o(t) = 0(t — 60s). f. is 5 times the standard deviation.
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Mathematical basis

Discussion and overall conclusion

Larger velocity gust

u[my/s]

20 40 60 80 100 120
time[s]

o(t) = 0(t — 60s). f. is 20 times the standard deviation.
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Mathematical basis

Discussion and overall conclusion

Example: “Velocity jump”

4
3 E

— 2

© 1t

S

5 25

-3 ‘ ‘ ‘ ‘ ‘ ‘ ‘
45 50 55 60 65 70 75 80
time[s]

jump of size Au(t) = u(t + At/2) — u(t — At/2) = 50, and with
At=3s
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Mathematical basis

Discussion and overall conclusion

Generalizations of constrained simulation

@ More than one component of the velocity.

Jakob Mann



Mathematical basis

Discussion and overall conclusion

Generalizations of constrained simulation
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Mathematical basis

Discussion and overall conclusion

Generalizations of constrained simulation

@ More than one component of the velocity.
@ More than one constraint

© Time series — spatial fields

Jakob Mann



Mathematical basis

Discussion and overall conclusion

Example: " Anisotropic 3D jump” (1:2)

u-turbulence simulation of velocity jump based on the spectral
tensor by Mann
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Mathematical basis

Discussion and overall conclusion

Example: " Strong velocity shear” (1:2)

Shear increases N
@ Tilt moment on rotor

@ Dynamic loads on blades
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Mathematical basis

Discussion and overall conclusion

Example: " Strong velocity shear” (2:2)

z [m]

The difference in u at the two black point is 10 m/s.
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Mathematical basis

Discussion and overall conclusion

Example: "Measured time series” (1:3)

30

25
§ 20
n

2 15

a
= 10 :

252 254 256 258 260
Time[s]

Mast measurements at z =19, 31, and 42 m (hub).
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Mathematical basis

Discussion and overall conclusion

Example: "Measured time series” (2:3)

Speed [m/s]
5 5 8

252 254 256 258 260
Time[s]

ol

Result of the constrained simulation at z =19, 31, and 42 m,...
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Mathematical basis

Discussion and overall conclusion

Example: "Measured time series” (3:3)

. and the entire u-field.
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Mathematical basis
Examples

Discussion of simulation

@ The nature of extreme wind gusts is probably radically
different from Gaussian simulation
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Mathematical basis
Examples

Discussion of simulation

@ The nature of extreme wind gusts is probably radically
different from Gaussian simulation

o Constrained simulation is also Gaussian, but probabilities of
extreme events can be “controlled”.

@ There is a myriad of other ways to simulate extreme events...
e for example Rosales & Meneveau (2006, 2008)
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Mathematical basis
Examples

Conclusion

@ The spatial structure is important for loads on turbines

@ Turbulence is quite well described over flat homogeneous
terrain/sea under neutral atmospheric stratification.

@ Turbulence is very dependent on stability and on the terrain

@ There is no simple connection between the terrain and the
turbulence.

o Constrained simulation can incorporate extreme events in
stochastic fields
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Exercise

@ Download and install the IEC turbulence simulator
http://www.wasp.dk/Products/weng/
IECturbulenceSimulator.htm

@ Simulate and display a turbulence field

© Investigate the meaning of the many parameters

Jakob Mann


http://www.wasp.dk/Products/weng/IECturbulenceSimulator.htm
http://www.wasp.dk/Products/weng/IECturbulenceSimulator.htm
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