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Turbulence for wind turbine load modeling

The purpose is to describe spatial and temporal fluctuations with
relevance for wind turbine load calculations.
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Stationarity and homogeneity

A stochastic process X (t) is completely described in term of all
joint probabilities

p(x1, t1; x2, t2; ...; xn, tn) for all n

or equivalently (under some conditions) all moments

〈X (t1)X (t2)...X (tn)〉

It is stationary if

p(x1, t1; x2, t2; ...; xn, tn) = p(x1, t1 + t; x2, t2 + t; ...; xn, tn + t)

or

〈X (t1)X (t2)...X (tn)〉 = 〈X (t1 + t)X (t2 + t)...X (tn + t)〉 ∀t
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Atmospheric time series and stationarity
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Homogeneity

A stochastic field X (x) is homogeneous if

〈X (x1)X (x2)...X (xn)〉 = 〈X (x1 + r)X (x2 + r)...X (xn + r)〉

i. e. “stationary in space.”
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Homogeneity: Example

Wind direction at three heights (◦)
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A Gaussian variable

p(v) =
1√
2πσ

exp

(
−1

2

v 2

σ2

)

v

pHvL

The zero mean gaussian variable v is simulated by the Box-Müller
method.

Jakob Mann Turbulence and Spectra for wind field simulation



Turbulence for wind turbine load modeling
Three dimensional turbulence structure

Parameter variations

Basic properties and assumptions
Validity of assumptions

An n-dimensional Gaussian variable

p(v) =
1√

(2π)n det(R)
exp

(
−1

2
v ·Qv

)
v = {v1, v2, ..., vn}, 〈v〉 = 0

R = σ2


1 ρ1 ρ2 · · ·
ρ1 1 ρ1

ρ2 ρ1 1
...

. . .


Q = R−1

v1

v2,v3,...

v
is simulated by
Fourier techniques,
essentially treating
the eigenvectors of
R independently.
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Coordinate systems

Sea or Ground

x
y

z

U
w

v U: Mean wind speed.
u: Longitudinal fluctuations.
v : Transversal fluctuations.
w : Vertical fluctuations.
xi : Space coordinates.
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The logarithmic velocity profile

ρ Air density (kg/m3)

τ Frictional force on a unit are of the surface (kg m−1

s−2)

z Distance from the surface.

The only combination giving the dimension of velocity gradient is

dU

dz
= const

√
τ

ρz2
=

u∗
κz
, (1)

where the friction velocity u∗ is defined by

τ = ρu2
∗

and κ ≈ 0.4 is the dimensionless von Kármán constant. Other
turbulence quantities relate to u2

∗ = −〈uw〉:
σu ≈ 2.4u∗ σv ≈ 1.9u∗ σw ≈ 1.25u∗
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The logarithmic velocity profile

Solving (1) we get

U(z) =
u∗
κ

log (z/z0)

where the roughness length z0 is an integration constant.
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The influence of stability

Stable and unstable flows
A much used parameter in fluid dynamics

Ri =
g

T

dΘ/dz

(dU/dz)2
,

where Θ is the mean potential temperature.
In surface layer meteorology the parameter z/L where

L =
T

gκ

u3
∗

〈wθ〉 (2)

is the Monin-Obukhov length, is widely used. Departures from
neutral profiles can, at least close to the ground, be written as
empirical functions of z/L.
The finite height of the boundary layer will limit the linear growth
of the eddy diffusivity making the profile look stable. Analysis of
profiles from Høvsøre up to 160 m confirm this.
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Are homogeneity, stationarity, gaussianity and neutral
atmospheric stratification valid?

Lack of stationarity at an off-shore location. Wind speed constant
≈ 15 m/s in ∆θ = 75◦ in 30 s.
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Stationarity?

Off-shore frontal passage: ∆u = 19m/s in ∆tu = 60s.
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Independence of stability at strong winds?

Spectra of w from the Great Belt Coherence Experiment. Mean wind

speeds are between 16 and 20 m/s and directions are in a narrow interval

around the South. Dashed spectra have slightly unstable stratification,

gray have stable, and the thin have neutral.
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Gaussianity

Pdf of instantaneous
velocity differences
between two heights
within the rotor plane.
Smooth curves are
expectations from
standards.
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Technical preliminaries of the Mann model

Suppose the velocity field is homogeneous.
Taylor’s frozen turbulence hypothesis

ũ(x , y , z , t) = ũ(x − Ut, y , z , 0)

Covariance tensor

Rij(r) = 〈ui (x)uj(x + r)〉

For r = 0 the diagonal elements of Rij are σ2
u, σ

2
v , σ

2
w . For |r| → ∞

Rij → 0.
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Technical preliminaries of the Mann model

Spectral tensor

Φij(k) =
1

(2π)3

∫
Rij(r) exp(−ik · r)dr

One-dimensional spectrum

Fi (k1) =
1

2π

∫ ∞
−∞

Rij(x , 0, 0)e−ik1xdx

Cross-spectrum

χij(k1,∆y ,∆z) =
1

2π

∫ ∞
−∞

Rij(x ,∆y ,∆z)e−ik1xdx

Coherence

cohij(k1,∆y ,∆x) =
|χij(k1,∆y ,∆z)|2

Fi (k1)Fj(k1)
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Symmetries

From symmetries it is possible to determine if some cross-spectra
are real, purely imaginary or zero. The symmetry group of a
turbulent field is the set of all orthonormal transformations T for
which the second order statistics of ui (x) is the same as Tijuj(T x).
Consequences for the correlation tensor:

Rij(r) ≡ 〈ui (x)uj(x + r)〉
= 〈Tikuk(T x)Tjlul(T x + T r)〉
= Tik 〈uk(T x)ul(T x + T r)〉Tjl

= TikRkl(T r)Tjl
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Symmetries

Example

T =

 1 0 0
0 −1 0
0 0 1


⇒

R23(x , 0, z) = −R23(x , 0, z)⇒ R23(x , 0, z) = 0
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Properties of the spectral tensor

Φij(k) ≡ 1

(2π)3

∫
Rij(r) exp (−ik · r) dr

m

Rij(r) =

∫
Φij(k) exp (ik · r) dk

Rij(r) = Rji (−r)⇒ Φij(k) = Φ∗ji (k),

where ∗ denotes complex conjugation.

Rij(r) = TikRkl(T r)Tjl ⇔ Φij(k) = TikΦkl(T k)Tjl

where ∗ also denotes the adjoint, i.e. in the case of a real matrix
the transpose.
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Incompressibility

∇ · u(x) =
∂ui

∂xi
= 0

⇔ kiui (k) = 0.

∂

∂rj
Rij(r) =

∂

∂rj
〈ui (x)uj(x + r)〉 =

〈
ui (x)

∂

∂rj
uj(x + r)

〉
= 0

⇔ kjΦij(k) = 0. This property implies zero direct backscatter of
acoustical beams under neutral stratification.
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Isotropy

All orthonormal transformations T leaves the statistics of the
velocity field u unchanged.
For a moment think of a scalar field θ(x) and consider the second
order statistics R(r) = 〈θ(x)θ(x + r)〉. Isotropy here implies that
R(r) can only depend on r = |r|.
An isotropic, symmetric second order tensor as the velocity
correlation function can only depend on

δij kikj

We are left with

Φij(k) = f1(k)δij + f2(k)kikj
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Φij(k) =
E (k)

4πk2

(
δij −

kikj

k2

)
where E (k) is half the variance of the wind velocity fluctuations
whose magnitude of the wave vector is in the range (k , k + dk).
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Kolmogorov and von Kármán

Kolmogorov (1941) (dimensional analysis) for large k but still
smaller than the wave length corresponding to the viscous scale.

E (k) = αε2/3k5/3

The value of “the spectral Kolmogorov constant” α is ≈ 1.7.
Implies

F22(k1) = F33(k1) =
4

3
F11(k1)

as in the IEC standard.
Isotropy implies σ2

u = σ2
v = σ2

w . Also χ13 = 0.
Von Kármán proposed

E (k) = αε2/3L5/3 (Lk)4

(1 + (Lk)2)17/6
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Navier-Stokes equations and higher order moments

a =
∂u

∂t
+ u · ∇u = −1

ρ
∇p + ν∇2u

From this it can be shown (Kolmogorov, 1941) that

〈
δu‖(r)3

〉
= −4

5
εr

which is in direct conflict with gaussianity.
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Rapid distortion theory

Rapid distortion theory (RDT) was originally formulated to
calculate turbulence in a wind tunnel contraction.
It was later used to model the response of turbulence to shear.
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The basic idea is to divide the flow into a mean and a fluctuating
part. In the Navier-Stokes equations the interaction (or products)
between fluctuating parts are ignored. This allows for a Fourier
transform of the equations, resulting in linear differential equations
with no coupling between wave-vectors.
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The Mann model

Symmetry group of the Mann modelI ,

 1 0 0
0 −1 0
0 0 1

 ,

 −1 0 0
0 1 0
0 0 −1

 ,−I
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The linearization is unrealistic; stretched ‘eddies’ will break up
(interaction between fluctuations). Equilibrium is postulated where
eddies of size ∝ |k|−1 are stretched by the shear over a time
proportional to their life time τ . In the inertial subrange
τ ∝ k−2/3. We introduce a parameter Γ , such that the

dimensionless life time, β, can be written as β ≡ dU
dz τ = Γ (kL)−

2
3 .

A more general model of the dimensionless eddy life time β outside
the inertial subrange is established in Mann (1994).
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Evolution of individual wave-vectors:

k0 = (k1, k2, k30) with k30 = k3 + βk1
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‘Initial condition’ dZiso(k0) has the statistics of the isotropic von
Kármán tensor. The sheared tensor is then given by

dZ(k) =

 1 0 ζ1

0 1 ζ2

0 0 k2
0/k2

dZiso(k0)

where
ζ1 = C1 − k2C2/k1 , ζ2 = k2C1/k1 + C2

with

C1 =
βk2

1 (k2
0 − 2k2

30 + βk1k30)

k2(k2
1 + k2

2 )

and

C2 =
k2k2

0

(k2
1 + k2

2 )
3
2

arctan

[
βk1(k2

1 + k2
2 )

1
2

k2
0 − k30k1β

]
,
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Compared to the isotropic tensor the extra parameter Γ implies

σ2
u > σ2

v > σ2
w

〈uw〉 < 0

Length scale of u much larger than w
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Comparison with data: Great Belt Coherence Experiment
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Figure 1: Two minutes time series of the three components of velocity measured in the
same point 70 m over the Great Belt.

The connection between the components of the spectral tensor and the cross-spectra is�ij(k1;�y;�z) = Z 1�1Z 1�1�ij(k)ei(k2�y+k3�z)dk2dk3: (11)

When the two indicesi and j are the same and�y = �z = 0 (11) becomes the
one-point spectrumFi(k1) = �ii(k1; 0; 0).

To distinguish between spectra as functions of wave numberk1 (= 2�f=U ) and
frequencyf we useF for the former andS for the latter, i.e.Si(f)df = Fi(k)dk.

Thecoherenceis defined asohij(k1;�y;�x) = j�ij(k1;�y;�z)j2Fi(k1)Fj(k1) : (12)

Davenport (1961) found that the coherence of theu components vertically separated
by a distance�z could be well approximated byohuu(f;�z) = exp��af�zU � ; (13)

whereU is the mean wind speed at an average height anda a constant of the order of
8. It can be shown both experimentally and theoretically, that the coherence does not
go to zero forf ! 0 for �z > 0 and that the coherence is smaller for large distances
than indicated by the Davenport model (Kristensen and Jensen 1979, Mann 1994). In
spite of these shortcomings (13) is widely used and has been extended to coherences
of the other wind components (with other values ofA) and to horizontal separations
(Panofsky and Dutton 1984, Simiu and Scanlan 1996, Dyrbye and Hansen 1997).

6
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Spectra and one-point cross-spectra
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Figure 2: Spectra from Great Belt. The thick curves are are spectra ofthe components
u (full line), v (dotted), andw (dashed). The thin, solid curve is the real value of the
one-point cross-spectrum ofu andw, and the dashed the imaginary value.

At a fixed separation∆z(or ∆y) the coherence decreases as a function of frequency.
This has the following crude interpretation: Eddies contributing to the spectrum at
higher frequencies are smaller, they can therefore not cover both of the two points
of measurements simultaneously and consequently the coherence gets smaller. On
the other hand, when we look at the very lowest frequencies we are describing larger
eddies which has a large probability of ‘hitting’ the two instruments simultaneously,
and thus the coherence is large.

To get acquainted with the concepts of spectra and coherences of atmospheric tur-
bulence we shall look at some data from an experiment which was designed(with
Dr. Davenport involved in the first phase of design) to know more aboutthe stochas-
tic loads on the Great Belt Bridge. Three sonic anemometers (see section 2.2) were
mounted at the tops of two 70 m high mast corresponding to the height of the bridge
deck. The horizontal separations were∆y = 15, 32.5, and 47.5 m.

The experiment acquired data for one year (Mann, Kristensen and Courtney 1991)
but for the purpose here we shall only look at two hours of data taken during a Christ-
mas storm in 1990 with a mean speed of 23 m/s and direction perpendicular to the
array of anemometers. Twominutesof data from one the sonics are shown in figure 1.
It may be seen that the variances of the velocity components obeyσ2

u > σ2
v > σ2

w im-
plying that the turbulence is certainly not isotropic. Note also that the wavelength
containing the most variance (or more or less equivalently, the integral scale) is largest
for u and smallest forw. Theu- and thew-signals are anti-correlated, which can be
difficult to judge from figure 1.

The spectra shown in figure 2 calculated from the entire two hour record also

7

One 2 hour run.
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Figure 3: A two minute fraction ofu measured at positions separated in the horizontal
direction perpendicular to the wind. The instruments used for the two lowest plots are
separated by∆y = 15 m, the upper and the middle by 32.5 m, and the upper and the
lower by 47.5 m.

reflect these properties. The component spectra also obey Kolmogorov’s 5
3-law for

high frequencies or wavenumbers and the associated law that the ratio between the
w- or v-spectrum to theu-spectrum should be 4/3 (Kolmogorov 1941, Landau and
Lifshitz 1987). Integrating the real part of the cross-spectrum (the thinsolid line in
figure 2) from−∞ to ∞ we get by definition−u2

∗.
The often used model spectra of Simiu and Scanlan (1996) have the same func-

tional shapes as Kaimal, Wyngaard, Izumi and Coté’s (1972) but the numerical con-
stants are different:

f Su( f )
u2∗

=
100n

(1+50n)5/3
, (14)

f Sv( f )
u2∗

=
7.5n

(1+9.5n)5/3
, (15)

and
f Sw( f )

u2∗
=

1.68n

1+10n5/3
, (16)

wheren = f z/U . These spectra obey closely the5
3- and 4

3-laws mentioned above and
also fit the observations at the Great Belt quite well2.

Figure 3 shows simultaneously recorded wind histories separated in the horizontal
direction by various distances. The coherences calculated from these timeseries are
shown in figure 4. At∆y = 47.5 m is less than implied by the Davenport model.

2Note, that these spectra are two-sided, i.e. we get the variance by integrating from−∞ to ∞.

8
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Normalized two-point cross-spectra: coherences
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Figure 4: Coherences from two hours of data. Parts of the time series areshown in
figure 3.

2 Measuring wind velocities in the atmosphere

In this section we shall discuss two anemometers which are widely used in the
atmosphere namely the cup and the sonics anemometer. Kaimal and Finnigan (1994)
discuss these instruments in more thoroughly.

2.1 The cup anemometer

The cup anemometer is probably the most widely used instrument for wind mea-
surements in the atmosphere. You always see them at weather stations, in airports, on
top of wind turbines, etc.

Invented by the Irish astronomer T. R. Robinson in 1846, the basic designof the
cup anemometer has not changed significantly in the last 150 years. The cup anemome-
ter shown in figure 5 has been used by Risø National Laboratory in almost unaltered
design since 1970.

A cup rotates because the drag with the concave side of the cup facing the wind
is larger than for the convex. A simple mathematical model for a cup would be to
assume that the drag on the concave side of the anemometer can be described in terms
of a drag coefficientC+

D which is independent of wind speedU and the density of air,
ρ. Then

F+ =
1
2

ρ(U − rS)2AC+
D , (17)

whereS is the angular speed,r the distance from the axis of rotation to the center of
the cup, andA the area of the cup. Similarly, for the ‘convex side’ of the anemometer:

F− =
1
2

ρ(U + rS)2AC−
D . (18)

9
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Average of all neutral runs
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Figure 3: Average u-, v-, w-, and cross-spectra of all the neutral runs present in
figure 2. The ragged curves are meansurements while the smooth are the model
spectra. The model has zero imaginary part of the cross-spectrum (quadrature
spectrum).

which are identical to (3.14) — (3.17) of (Mann 1994b).
Compared to the isotropic tensor model we have an extra parameter Γ which determines the

anisotropy of the tensor. Integrating the spectral tensor over the entire wave vector space we
obtain the (co-)variances as a function of Γ . It can be shown that when anisotropy in this way
is introduced, σ 2

u � σ 2
v � σ 2

w and � uw ��� 0 which is confirmed by observations. The larger Γ
the larger the difference between the variances.

Four experimental tests of the model has been carried out. Two are atmospheric, one over
water (Mann et al. 1991, Mann 1994b) and one over flat terrain (Courtney 1988), giving the
parameters L � z � 0 � 87, Γ � 3 � 2 and L � z � 0 � 91, Γ � 2 � 6, respectively. The third is based on
data from the Martin Jensen boundary layer wind tunnel (Smitt and Brinch 1992) at Danish
Maritime Institute (DMI) giving L � z � 0 � 60, Γ � 2 � 2, implying that the turbulence is closer to
being isotropic compared to the atmospheric turbulence, (Mann 1994a). The fourth test took
place in DMI’s wind tunnel used for bridge section model tests. In the setup used for these tests
there is almost no shear and Γ � 0 � 76 (and L � 0 � 39 m) and, consequently, the turbulence is
very close to being isotropic.

To simulate atmospheric turbulence we shall not rely solely on the two atmospheric exper-
iments mentioned above. In Mann (1998) the spectral tensor model is compared to commonly
used spectra and coherences. Below we shall take a closer look on comparisons with off-shore
data.

2.3 Fitting spectra to observations

Uncertainties on estimated spectra have several sources. These are either variations in atmo-
spheric stability, which persists even at high wind speeds ( � 16 m/s) over water, or statistical
variations. First, the measured neutral spectra are fitted to the spectral tensor model. Based on
this fit the coherences are predicted and compared to the measurements.

In order to conduct simultaneous measurements of spectra and coherence over the sea a
70 m high mast was erected 40 m from an existing mast on the easterly spit of Sprogø, an
island in the midst of the Great Belt separating the two Danish islands Funen and Zealand. A
15 m long horizontal boom was mounted symmetrically at the top of the new mast so that the
whole construction has the form of a letter “T”. A Kaijo-Denki DAT-300 omni-directional sonic

5
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Figure 4: The dots are measured coherences from the same set of data as used
for figure 3 for various horizontal separations ∆y and for all three velocity
components. The lines are the coherences predicted by the model.

anemometer was installed at each end of the boom and at the top of the old mast, providing 15.0,
32.5 and 47.5 m horizontal separations between the three co-linear instruments. More details
about the experiment may be found in Mann et al. (1991).

Figure 2 shows the result of an analysis of 14 two-hour time series from the Great Belt. The
series have mean speeds U between 16 and 20 m/s and the mean directions are within a narrow
range around south where there is an uninterrupted fetch over water for at least 20 km.

The observed variations in the spectra can not be explained by statistical variations alone.
Most noticeably, there are spectra with only 10% of the spectral density of the others. This
variation is due to the stability of the atmosphere not being neutral. The case with suppressed
turbulence is slightly stable and has U � 16 m/s. Unstable stratification also alters the spectrum.
Though none of the spectra from the Great Belt are obtained under very unstable situations, an
analysis of unstable, high-wind spectra on the west coast of Norway indicate that the spectra
are mainly enhanced (by more than 100%) at very low frequencies ( f � 0 � 02 Hz).

The measured spectra shown in figure 3 are an average of 16 neutral two hour runs with wind
speeds between 16 and 20 m/s. The smooth curves are model spectra derived from the spectral
tensor model with the parameters Γ � 3 � 2, L � 61 m, and αε2 � 3 � U2 � 1 � 810

� 4 m
� 2 � 3, which

are taken from Mann (1994b), who used fewer two hour runs but slightly higher wind speeds.
These parameters are in turn used to predict the coherences as shown in figure 4. As seen
from this figure the predictions agree well with the measurements except for the w coherence,
especially at the largest separation.

3 TURBULENCE IN COMPLEX TERRAIN

As indicated in section 2 a lot is known about turbulence over flat terrain. The purpose of this
part of the paper is to sketch the development of models that take into account the influence
of roughness changes and gentle hills on the turbulence statistics. The turbulence model used
input from a mean flow model called LINCOM:

3.1 The linear flow model LINCOM

Within the concept of linearized flow models originally introduced by Jackson and Hunt (1975),
Troen and de Baas (1986) developed a relatively simple model for neutrally stable flow over
hilly terrain. The model was later named LINCOM, an acronym for LINearized COMputation.
The base of this version of the code, giving the influence of the topography on the flow of a

6
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Results: diabatic observations

Obukhov length Atmospheric L u∗o zo zi No. of
interval [m] stability class [m] [m s−1] [m] [m] 10-min data

−100 ≤ L ≤ −50 Very unstable (vu) −74 0.35 0.013 600 397
−200 ≤ L ≤ −100 Unstable (u) −142 0.41 0.012 600 459
−500 ≤ L ≤ −200 Near unstable (nu) −314 0.40 0.012 550 292
|L| ≥ 500 Neutral (n) 5336 0.39 0.013 488 617

200 ≤ L ≤ 500 Near stable (ns) 318 0.36 0.012 451 439
50 ≤ L ≤ 200 Stable (s) 104 0.26 0.008 257 1144
10 ≤ L ≤ 50 Very stable (vs) 28 0.16 0.002 135 704

zi = C u∗o
|fc | for neutral and stable conditions

zo from

U =
u∗o
κ

[
ln

(
z

zo

)
− ψm

]
(3)
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Results: Mean wind profiles for various atmospheric
stabilities
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Turbulence in complex terrain

Two complications compared to flat terrain:

varying roughness

orography

These are incorporated in WAsP Engineering, but only for
moderately complex terrain: The basic limitation:

If there are extended areas within a radius of 3 to 4
km from the site of interest with slopes of more than 20◦

to 25◦, then turbulence may be much larger than
calculated. In this situation measurements at the site
may be required.
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A table mountain in Spain
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Mast 2: Ratio of wind speed at lower tip and hub height
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Mast 2: Diff. in wind direction at hub and lower tip height
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Instantaneous shears
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What aspects of the wind are important for a turbine?

D ∼ 50–150 m

zhub ∼ 50–150 m

0.05 . f . 1 Hz and even higher.

time history in one point not enough

u, but also v and w .

Jakob Mann Turbulence and Spectra for wind field simulation



Recapitulation of Part I
Simulation methods

Constrained simulation

What aspects of the wind are important for a turbine?

D ∼ 50–150 m

zhub ∼ 50–150 m

0.05 . f . 1 Hz and even higher.

time history in one point not enough

u, but also v and w .

Jakob Mann Turbulence and Spectra for wind field simulation



Recapitulation of Part I
Simulation methods

Constrained simulation

What aspects of the wind are important for a turbine?

D ∼ 50–150 m

zhub ∼ 50–150 m

0.05 . f . 1 Hz and even higher.

time history in one point not enough

u, but also v and w .

Jakob Mann Turbulence and Spectra for wind field simulation



Recapitulation of Part I
Simulation methods

Constrained simulation

What aspects of the wind are important for a turbine?

D ∼ 50–150 m

zhub ∼ 50–150 m

0.05 . f . 1 Hz and even higher.

time history in one point not enough

u, but also v and w .

Jakob Mann Turbulence and Spectra for wind field simulation



Recapitulation of Part I
Simulation methods

Constrained simulation

What aspects of the wind are important for a turbine?

D ∼ 50–150 m

zhub ∼ 50–150 m

0.05 . f . 1 Hz and even higher.

time history in one point not enough

u, but also v and w .

Jakob Mann Turbulence and Spectra for wind field simulation



Recapitulation of Part I
Simulation methods

Constrained simulation

Wind statistics over flat terrain

Gaussianity often OK, despite
〈
δv‖(r)3

〉
= −4

5εr .

Stationarity often OK

Homogeneity often OK, at least in the horizontal.
dU/dz = u∗/κz

Taylor’s hypothesis OK for most practical purposes
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Gauss OK ⇒ 2. order statistics is everything

Taylor’s frozen turbulence hypothesis

ũ(x , y , z , t) = ũ(x − Ut, y , z , 0)

Need to know: covariance tensor Rij(r) = 〈ui (x)uj(x + r)〉, the
spectral tensor Φij(k)

or

One-dimensional spectrum Fi (k1) = 1
2π

∫∞
−∞Rij(x , 0, 0)e−ik1xdx , and

cross-spectra χij(k1,∆y ,∆z) or the coherence cohij(k1,∆y ,∆x)
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Simulation methods

Constrained simulation

The Sandia method
The spectral tensor method

Sandia/Veers simulation method

Uses spectra and coherences to
simulate a mesh of correlated time
series

Choleski decomposition

Homogeneity not necessary, but
often assumed.

Phases ignored, incompressibility
ignored.
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Recapitulation of Part I
Simulation methods

Constrained simulation

The Sandia method
The spectral tensor method

The Mann model

The spectral tensor Φij(k) is modelled based on

Incompressibility kiΦij(k) = 0

Linearized Navier-Stokes equations close with “eddy life time”
considerations (Mann, 1994)

Small scale isotropy Φij(k) = E(k)
4πk4

(
k2δij − kikj

)
,

E (k) = αε2/3k−5/3 for k →∞.

Large scale anisotropy, σu > σv > σw , 〈uw〉 < 0,
Lu > Lv > Lw

Notice: Only three parameters: L, αε2/3, and Γ.
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Recapitulation of Part I
Simulation methods

Constrained simulation

The Sandia method
The spectral tensor method

Fourier simulation

u(x) =
∑

eik·xu(k)

where 〈
ui (k)u∗j (k′)

〉
∝ Φij(k)δ(k− k′)
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Recapitulation of Part I
Simulation methods

Constrained simulation

The Sandia method
The spectral tensor method

Wind simulation
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Recapitulation of Part I
Simulation methods

Constrained simulation

Mathematical basis
Examples
Discussion and overall conclusion

Constrained simulation

Simulate v = {v1, v2, ...} provided that
∑n

i=1 ϕivi = ϕ · v = fc .
Examples:

1 Gust in the middle of the time series: ϕi = 1 for i = n/2 and
zero elsewhere. I.e. the condition is vn/2 = fc .

2 Velocity jump over 5 time steps: ϕj = −1 and ϕj+5 = 1. The
condition is uj+5 − uj = fc .

3 Choose ϕ to match time scales in the control system.
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Simulation methods

Constrained simulation

Mathematical basis
Examples
Discussion and overall conclusion

Constrained simulation

Most probable v:

Minimize
1

2
v ·Qv

subject to ϕ · v = fc

The solution is the “average gust” vave :

vave =
fcRϕ

ϕ · Rϕ

Ex: In the continuum limit suppose ϕ(t) = δ(t). Then

vave(t) = 〈v(t)|v(0) = fc〉 =
fc
σ2

R(t)
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Recapitulation of Part I
Simulation methods

Constrained simulation

Mathematical basis
Examples
Discussion and overall conclusion

Constrained Gaussian simulation

To simulate v under the constraint ϕ · v = fc :

1 Simulate stationary vs = {vs1, vs2, ...} with no constraints.

2 calculate

v = vs +
fc −ϕ · vs

ϕ · Rϕ
Rϕ

v fulfils the constraint ϕ · v = fc and is generated at the right rate.

Jakob Mann Turbulence and Spectra for wind field simulation



Recapitulation of Part I
Simulation methods

Constrained simulation

Mathematical basis
Examples
Discussion and overall conclusion

Example: “Velocity gust”

The stationary gaussian turbulence vs is simulated assuming a von
Kármán spectrum. The correlation R is derived from this spectrum.

20 40 60 80 100 120
time �s�

�2
0
2
4
6

u
�m
�s
�

ϕ(t) = δ(t − 60s). fc is 5 times the standard deviation.
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Constrained simulation

Mathematical basis
Examples
Discussion and overall conclusion

Larger velocity gust
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ϕ(t) = δ(t − 60s). fc is 20 times the standard deviation.
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Simulation methods

Constrained simulation

Mathematical basis
Examples
Discussion and overall conclusion

Example: “Velocity jump”
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time �s�

�3
�2
�1

0
1
2
3
4

u
�m
�s
�

jump of size ∆u(t) ≡ u(t + ∆t/2)− u(t −∆t/2) = 5σu and with
∆t = 3 s
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Recapitulation of Part I
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Constrained simulation

Mathematical basis
Examples
Discussion and overall conclusion

Generalizations of constrained simulation

1 More than one component of the velocity.

2 More than one constraint

3 Time series → spatial fields
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Constrained simulation

Mathematical basis
Examples
Discussion and overall conclusion

Example: ”Anisotropic 3D jump” (1:2)

20

40

60

80

100
x � � U t �m�

0

20

40

60

y �m�

0

20

40

60

z �m�

�5

�3

�1

1

3

5

u
�m
�s
�

20

40

60

80
� � � �

20

40

60

w
in

d
�m
�s
�

�4

�2

0

2

4

u-turbulence simulation of velocity jump based on the spectral
tensor by Mann
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Constrained simulation

Mathematical basis
Examples
Discussion and overall conclusion

Example: ”Strong velocity shear” (1:2)

Shear increases

Tilt moment on rotor

Dynamic loads on blades
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Constrained simulation

Mathematical basis
Examples
Discussion and overall conclusion

Example: ”Strong velocity shear” (2:2)
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The difference in u at the two black point is 10 m/s.
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Constrained simulation

Mathematical basis
Examples
Discussion and overall conclusion

Example: ”Measured time series” (1:3)
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Mast measurements at z =19, 31, and 42 m (hub).
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Example: ”Measured time series” (2:3)
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Result of the constrained simulation at z =19, 31, and 42 m,...
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Example: ”Measured time series” (3:3)

... and the entire u-field.
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Discussion of simulation

The nature of extreme wind gusts is probably radically
different from Gaussian simulation

Constrained simulation is also Gaussian, but probabilities of
extreme events can be “controlled”.

There is a myriad of other ways to simulate extreme events...

for example Rosales & Meneveau (2006, 2008)
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Conclusion

The spatial structure is important for loads on turbines

Turbulence is quite well described over flat homogeneous
terrain/sea under neutral atmospheric stratification.

Turbulence is very dependent on stability and on the terrain

There is no simple connection between the terrain and the
turbulence.

Constrained simulation can incorporate extreme events in
stochastic fields

Jakob Mann Turbulence and Spectra for wind field simulation



Exercise

1 Download and install the IEC turbulence simulator
http://www.wasp.dk/Products/weng/
IECturbulenceSimulator.htm

2 Simulate and display a turbulence field

3 Investigate the meaning of the many parameters

Jakob Mann Turbulence and Spectra for wind field simulation
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