Turbulence and Spectra for wind field simulation

Jakob Mann

Risø DTU, Roskilde, Denmark

August, 2011 – PhD Course: LES in Hydrodynamics and Offshore Wind Energy

Outline of Part I: Turbulence structure

- Turbulence for wind turbine load modeling
 - Basic properties and assumptions
 - Validity of assumptions

Outline of Part I: Turbulence structure

- Turbulence for wind turbine load modeling
 - Basic properties and assumptions
 - Validity of assumptions
- 2 Three dimensional turbulence structure
 - Description by a spectral tensor
 - Rapid Distortion Theory and the Mann model
 - Testing the model

Outline of Part I: Turbulence structure

- Turbulence for wind turbine load modeling
 - Basic properties and assumptions
 - Validity of assumptions
- 2 Three dimensional turbulence structure
 - Description by a spectral tensor
 - Rapid Distortion Theory and the Mann model
 - Testing the model
 - 3 Parameter variations
 - Høvsøre site
 - Diabatic observations
 - Extensions to complex terrain

Basic properties and assumptions Validity of assumptions

Turbulence for wind turbine load modeling

The purpose is to describe spatial and temporal fluctuations with relevance for wind turbine load calculations.

Basic properties and assumptions Validity of assumptions

Stationarity and homogeneity

A stochastic process X(t) is completely described in term of all joint probabilities

$$p(x_1, t_1; x_2, t_2; ...; x_n, t_n)$$
 for all n

or equivalently (under some conditions) all moments

 $\langle X(t_1)X(t_2)...X(t_n)\rangle$

It is stationary if

$$p(x_1, t_1; x_2, t_2; ...; x_n, t_n) = p(x_1, t_1 + t; x_2, t_2 + t; ...; x_n, t_n + t)$$

or

$$\langle X(t_1)X(t_2)...X(t_n)\rangle = \langle X(t_1+t)X(t_2+t)...X(t_n+t)\rangle \quad \forall t$$

Basic properties and assumptions Validity of assumptions

Atmospheric time series and stationarity

Basic properties and assumptions Validity of assumptions

Homogeneity

A stochastic field $X(\mathbf{x})$ is *homogeneous* if

$$\langle X(\mathbf{x}_1)X(\mathbf{x}_2)...X(\mathbf{x}_n)\rangle = \langle X(\mathbf{x}_1 + \mathbf{r})X(\mathbf{x}_2 + \mathbf{r})...X(\mathbf{x}_n + \mathbf{r})\rangle$$

i. e. "stationary in space."

Basic properties and assumptions Validity of assumptions

Homogeneity: Example

Basic properties and assumptions Validity of assumptions

A Gaussian variable

The zero mean gaussian variable v is simulated by the Box-Müller method.

Basic properties and assumptions Validity of assumptions

An *n*-dimensional Gaussian variable

$$\rho(\mathbf{v}) = \frac{1}{\sqrt{(2\pi)^n \det(\mathbf{R})}} \exp\left(-\frac{1}{2}\mathbf{v} \cdot \mathbf{Q}\mathbf{v}\right)$$
$$\mathbf{v} = \{v_1, v_2, \dots, v_n\}, \ \langle \mathbf{v} \rangle = \mathbf{0}$$
$$\mathbf{R} = \sigma^2 \left\{ \begin{array}{cc} 1 & \rho_1 & \rho_2 & \cdots \\ \rho_1 & 1 & \rho_1 \\ \rho_2 & \rho_1 & 1 \\ \vdots & \ddots \end{array} \right\}$$
$$\mathbf{Q} = \mathbf{R}^{-1}$$

is simulated by Fourier techniques, essentially treating the eigenvectors of **R** independently.

Basic properties and assumptions Validity of assumptions

Coordinate systems

- U: Mean wind speed.
- *u*: **Longitudinal** fluctuations.
- V: Transversal fluctuations.
- v: Vertical fluctuations.
- *i*: Space coordinates.

Basic properties and assumptions Validity of assumptions

The logarithmic velocity profile

- ho Air density (kg/m³)
- au Frictional force on a unit are of the surface (kg m⁻¹ s⁻²)
- z Distance from the surface.

The only combination giving the dimension of velocity gradient is

$$\frac{dU}{dz} = \text{const}\sqrt{\frac{\tau}{\rho z^2}} = \frac{u_*}{\kappa z},\tag{1}$$

where the *friction velocity* u_* is defined by

$$\tau = \rho u_*^2$$

and $\kappa \approx 0.4$ is the dimensionless von Kármán constant. Other turbulence quantities relate to $u_*^2 = -\langle uw \rangle$:

$$\sigma_u \approx 2.4 u_* \quad \sigma_v \approx 1.9 u_* \quad \sigma_w \approx 1.25 u_*$$

Basic properties and assumptions Validity of assumptions

The logarithmic velocity profile

Solving (1) we get

$$U(z) = \frac{u_*}{\kappa} \log\left(z/z_0\right)$$

where the roughness length z_0 is an integration constant.

Basic properties and assumptions Validity of assumptions

The influence of stability

Stable and unstable flows A much used parameter in fluid dynamics

$$Ri = rac{g}{T} rac{d\Theta/dz}{(dU/dz)^2},$$

where Θ is the mean *potential* temperature.

In surface layer meteorology the parameter z/L where

$$L = \frac{T}{g\kappa} \frac{u_*^3}{\langle w\theta \rangle} \tag{2}$$

is the *Monin-Obukhov length*, is widely used. Departures from neutral profiles can, at least close to the ground, be written as empirical functions of z/L.

The finite height of the boundary layer will limit the linear growth of the eddy diffusivity making the profile look stable. Analysis of profiles from Høvsøre up to 160 m confirm this.

Basic properties and assumptions /alidity of assumptions

Are homogeneity, stationarity, gaussianity and neutral atmospheric stratification valid?

Time [s] Lack of stationarity at an off-shore location. Wind speed constant $\approx 15 \text{ m/s in } \Delta \theta = 75^{\circ} \text{ in } 30 \text{ s.}$

Basic properties and assumptions Validity of assumptions

Stationarity?

Basic properties and assumptions Validity of assumptions

Independence of stability at strong winds?

Spectra of w from the Great Belt Coherence Experiment. Mean wind speeds are between 16 and 20 m/s and directions are in a narrow interval around the South. Dashed spectra have slightly unstable stratification, gray have stable, and the thin have neutral.

Basic properties and assumptions Validity of assumptions

Gaussianity

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

Technical preliminaries of the Mann model

Suppose the velocity field is homogeneous. Taylor's frozen turbulence hypothesis

$$\tilde{\mathbf{u}}(x, y, z, t) = \tilde{\mathbf{u}}(x - Ut, y, z, 0)$$

Covariance tensor

$$R_{ij}(\mathbf{r}) = \langle u_i(\mathbf{x})u_j(\mathbf{x}+\mathbf{r}) \rangle$$

For $\mathbf{r} = 0$ the diagonal elements of R_{ij} are $\sigma_u^2, \sigma_v^2, \sigma_w^2$. For $|\mathbf{r}| \to \infty$ $R_{ij} \to 0$.

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

Technical preliminaries of the Mann model

Spectral tensor

$$\Phi_{ij}(\mathbf{k}) = rac{1}{(2\pi)^3} \int R_{ij}(\mathbf{r}) \exp(-\mathrm{i}\mathbf{k}\cdot\mathbf{r}) \mathrm{d}\mathbf{r}$$

One-dimensional spectrum

$$F_i(k_1) = \frac{1}{2\pi} \int_{-\infty}^{\infty} R_{ij}(x,0,0) \mathrm{e}^{-\mathrm{i}k_1 x} \mathrm{d}x$$

Cross-spectrum

$$\chi_{ij}(k_1, \Delta y, \Delta z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} R_{ij}(x, \Delta y, \Delta z) e^{-ik_1 x} dx$$

Coherence

$$\operatorname{coh}_{ij}(k_1, \Delta y, \Delta x) = rac{|\chi_{ij}(k_1, \Delta y, \Delta z)|^2}{F_i(k_1)F_j(k_1)}$$

Symmetries

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

From symmetries it is possible to determine if some cross-spectra are real, purely imaginary or zero. The symmetry group of a turbulent field is the set of all orthonormal transformations T for which the second order statistics of $u_i(\mathbf{x})$ is the same as $T_{ij}u_j(T\mathbf{x})$. Consequences for the correlation tensor:

$$R_{ij}(\mathbf{r}) \equiv \langle u_i(\mathbf{x})u_j(\mathbf{x} + \mathbf{r}) \rangle$$

= $\langle T_{ik}u_k(T\mathbf{x})T_{jl}u_l(T\mathbf{x} + T\mathbf{r}) \rangle$
= $T_{ik}\langle u_k(T\mathbf{x})u_l(T\mathbf{x} + T\mathbf{r}) \rangle T_{jl}$
= $T_{ik}R_{kl}(T\mathbf{r})T_{jl}$

Symmetries

Example

$$T = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$
$$\Rightarrow$$

$$R_{23}(x,0,z) = -R_{23}(x,0,z) \Rightarrow R_{23}(x,0,z) = 0$$

Jakob Mann Turbulence and Spectra for wind field simulation

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

Properties of the spectral tensor

$$R_{ij}(\mathbf{r}) = R_{ji}(-\mathbf{r}) \Rightarrow \Phi_{ij}(\mathbf{k}) = \Phi_{ji}^*(\mathbf{k}),$$

where * denotes complex conjugation.

$$R_{ij}(\mathbf{r}) = T_{ik}R_{kl}(T\mathbf{r})T_{jl} \Leftrightarrow \Phi_{ij}(\mathbf{k}) = T_{ik}\Phi_{kl}(T\mathbf{k})T_{jl}$$

where * also denotes the adjoint, i.e. in the case of a real matrix the transpose.

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

Incompressibility

$$abla \cdot \mathbf{u}(\mathbf{x}) = rac{\partial u_i}{\partial x_i} = 0$$

 $\Leftrightarrow k_i u_i(\mathbf{k}) = 0.$

$$\frac{\partial}{\partial r_j}R_{ij}(\mathbf{r}) = \frac{\partial}{\partial r_j}\left\langle u_i(\mathbf{x})u_j(\mathbf{x}+\mathbf{r})\right\rangle = \left\langle u_i(\mathbf{x})\frac{\partial}{\partial r_j}u_j(\mathbf{x}+\mathbf{r})\right\rangle = 0$$

 $\Leftrightarrow k_j \Phi_{ij}(\mathbf{k}) = 0$. This property implies zero direct backscatter of acoustical beams under neutral stratification.

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

lsotropy

All orthonormal transformations T leaves the statistics of the velocity field **u** unchanged.

For a moment think of a scalar field $\theta(\mathbf{x})$ and consider the second order statistics $R(\mathbf{r}) = \langle \theta(\mathbf{x})\theta(\mathbf{x} + \mathbf{r}) \rangle$. Isotropy here implies that $R(\mathbf{r})$ can only depend on $r = |\mathbf{r}|$.

An isotropic, symmetric second order tensor as the velocity correlation function can only depend on

We are left with

$$\Phi_{ij}(\mathbf{k}) = f_1(k)\delta_{ij} + f_2(k)k_ik_j$$

$$\Phi_{ij}(\mathbf{k}) = \frac{E(k)}{4\pi k^2} \left(\delta_{ij} - \frac{k_i k_j}{k^2} \right)$$

where E(k) is half the variance of the wind velocity fluctuations whose magnitude of the wave vector is in the range (k, k + dk).

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

Kolmogorov and von Kármán

Kolmogorov (1941) (dimensional analysis) for large k but still smaller than the wave length corresponding to the viscous scale.

$$E(k) = \alpha \varepsilon^{2/3} k^{5/3}$$

The value of "the spectral Kolmogorov constant" α is \approx 1.7. Implies

$$F_{22}(k_1) = F_{33}(k_1) = \frac{4}{3}F_{11}(k_1)$$

as in the IEC standard. Isotropy implies $\sigma_u^2 = \sigma_v^2 = \sigma_w^2$. Also $\chi_{13} = 0$. Von Kármán proposed

$$E(k) = \alpha \varepsilon^{2/3} L^{5/3} \frac{(Lk)^4}{(1 + (Lk)^2)^{17/6}}$$

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

Navier-Stokes equations and higher order moments

$$\mathbf{a} = \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u}$$

From this it can be shown (Kolmogorov, 1941) that

$$\left< \delta u_{\parallel}(\mathbf{r})^3 \right> = -\frac{4}{5} \varepsilon r$$

which is in direct conflict with gaussianity.

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

Rapid distortion theory

Rapid distortion theory (RDT) was originally formulated to calculate turbulence in a wind tunnel contraction.

It was later used to model the response of turbulence to shear.

Turbulence for wind turbine load modeling	Description by a spectral tensor
Three dimensional turbulence structure	
Parameter variations	Testing the model

The basic idea is to divide the flow into a mean and a fluctuating part. In the Navier-Stokes equations the interaction (or products) between fluctuating parts are ignored. This allows for a Fourier transform of the equations, resulting in linear differential equations with no coupling between wave-vectors.

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

The Mann model

Symmetry group of the Mann model

$$\left\{I, \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right), -I\right\}$$

The linearization is unrealistic; stretched 'eddies' will break up (interaction between fluctuations). Equilibrium is postulated where eddies of size $\propto |\mathbf{k}|^{-1}$ are stretched by the shear over a time proportional to their life time τ . In the inertial subrange $\tau \propto k^{-2/3}$. We introduce a parameter Γ , such that the dimensionless life time, β , can be written as $\beta \equiv \frac{\mathrm{d}U}{\mathrm{d}z}\tau = \Gamma(kL)^{-\frac{2}{3}}$. A more general model of the dimensionless eddy life time β outside the inertial subrange is established in Mann (1994).

Evolution of individual wave-vectors:

 Turbulence for wind turbine load modeling
 Description by a spectral tensor

 Three dimensional turbulence structure
 Rapid Distortion Theory and the Mann model

 Parameter variations
 Testing the model

'Initial condition' $dZ^{iso}(k_0)$ has the statistics of the isotropic von Kármán tensor. The sheared tensor is then given by

$$\mathrm{d}\mathbf{Z}(\mathbf{k}) = \begin{bmatrix} 1 & 0 & \zeta_1 \\ 0 & 1 & \zeta_2 \\ 0 & 0 & k_0^2/k^2 \end{bmatrix} \mathrm{d}\mathbf{Z}^{\mathrm{iso}}(\mathbf{k}_0)$$

where

$$\zeta_1 = C_1 - k_2 C_2 / k_1 , \ \zeta_2 = k_2 C_1 / k_1 + C_2$$

with

$$C_1 = \frac{\beta k_1^2 (k_0^2 - 2k_{30}^2 + \beta k_1 k_{30})}{k^2 (k_1^2 + k_2^2)}$$

and

$$C_2 = \frac{k_2 k_0^2}{(k_1^2 + k_2^2)^{\frac{3}{2}}} \arctan\left[\frac{\beta k_1 (k_1^2 + k_2^2)^{\frac{1}{2}}}{k_0^2 - k_{30} k_1 \beta}\right],$$

 Turbulence for wind turbine load modeling
 Description by a spectral tensor

 Three dimensional turbulence structure
 Rapid Distortion Theory and the Mann model

 Parameter variations
 Testing the model

Compared to the isotropic tensor the extra parameter Γ implies

- $\bullet \ \sigma_u^2 > \sigma_v^2 > \sigma_w^2$
- $\langle uw
 angle < 0$
- Length scale of *u* much larger than *w*

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

Comparison with data: Great Belt Coherence Experiment

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

Comparison with data: Great Belt Coherence Experiment

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

Spectra and one-point cross-spectra

One 2 hour run.

 Turbulence for wind turbine load modeling
 Description by a spectral tensor

 Three dimensional turbulence structure
 Rapid Distortion Theory and the Mann model

 Testing the model
 Testing the model

Time [s]

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

Normalized two-point cross-spectra: coherences

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

Average of all neutral runs

Description by a spectral tensor Rapid Distortion Theory and the Mann model Testing the model

Predicted coherences

Høvsøre site Diabatic observations Extensions to complex terrain

Site and measurements at Høvsøre

- 20 Hz Sonics at 10, 20, 40, 60, 80. 100 and 160 m
- 10-min time series collected for ${\sim}1$ year

Høvsøre site Diabatic observations Extensions to complex terrain

Jakob Mann Turbulence and Spectra for wind field simulation

Høvsøre site <mark>Diabatic observations</mark> Extensions to complex terrain

Results: diabatic observations

Obukhov length	Atmospheric	L	U _{*0}	Zo	Zi	No. of
interval [m]	stability class	[m]	$[m \ s^{-1}]$	[m]	[m]	10-min data
$-100 \le L \le -50$	Very unstable (vu)	-74	0.35	0.013	600	397
$-200 \leq L \leq -100$	Unstable (u)	-142	0.41	0.012	600	459
$-500 \le L \le -200$	Near unstable (nu)	-314	0.40	0.012	550	292
$ L \ge 500$	Neutral (n)	5336	0.39	0.013	488	617
$200 \le L \le 500$	Near stable (ns)	318	0.36	0.012	451	439
$50 \le L \le 200$	Stable (s)	104	0.26	0.008	257	1144
$10 \leq L \leq 50$	Very stable (vs)	28	0.16	0.002	135	704

• $z_i = C \frac{u_{*o}}{|f_c|}$ for neutral and stable conditions

• *z_o* from

$$U = \frac{u_{*o}}{\kappa} \left[\ln \left(\frac{z}{z_o} \right) - \psi_m \right]$$
(3)

Høvsøre site <mark>Diabatic observations</mark> Extensions to complex terrain

Results: Mean wind profiles for various atmospheric stabilities

Jakob Mann Turbulence and Spectra for wind

Høvsøre site <mark>Diabatic observations</mark> Extensions to complex terrain

Very unstable spectra

Høvsøre site <mark>Diabatic observations</mark> Extensions to complex terrain

Unstable spectra

Høvsøre site <mark>Diabatic observations</mark> Extensions to complex terrain

Near unstable spectra

Høvsøre site <mark>Diabatic observations</mark> Extensions to complex terrain

Neutral spectra

Høvsøre site <mark>Diabatic observations</mark> Extensions to complex terrain

Near stable spectra

Høvsøre site <mark>Diabatic observations</mark> Extensions to complex terrain

Stable spectra

Høvsøre site <mark>Diabatic observations</mark> Extensions to complex terrain

Very stable spectra

Høvsøre site <mark>Diabatic observations</mark> Extensions to complex terrain

Mann (1994) model parameters

Høvsøre site Diabatic observations Extensions to complex terrain

Turbulence in complex terrain

Two complications compared to flat terrain:

- varying roughness
- orography

These are incorporated in WAsP Engineering, but only for moderately complex terrain: The basic limitation:

If there are extended areas within a radius of 3 to 4 km from the site of interest with slopes of more than 20° to 25°, then turbulence may be much larger than calculated. In this situation measurements at the site may be required.

Høvsøre site Diabatic observations Extensions to complex terrain

Really complex terrain

Høvsøre site Diabatic observations Extensions to complex terrain

A table mountain in Spain

2 masts and 54 turbines.

Høvsøre site Diabatic observations Extensions to complex terrain

Stretched a factor of 2

Høvsøre site Diabatic observations Extensions to complex terrain

Mast 1: Ratio of between wind speed at lower tip and hub height

Høvsøre site Diabatic observations Extensions to complex terrain

Mast 2: Ratio of wind speed at lower tip and hub height

Høvsøre site Diabatic observations Extensions to complex terrain

Mast 2: Diff. in wind direction at hub and lower tip height

Høvsøre site Diabatic observations Extensions to complex terrain

Instantaneous shears

Mast measurements at z = 19, 31, and 42 m (hub). Direction diff. up to 90° .

Outline of Part II: Turbulence simulation

Outline of Part II: Turbulence simulation

- Simulation methods
 - The Sandia method
 - The spectral tensor method

Outline of Part II: Turbulence simulation

Simulation methods

- The Sandia method
- The spectral tensor method
- 6 Constrained simulation
 - Mathematical basis
 - Examples
 - Discussion and overall conclusion

What aspects of the wind are important for a turbine?

• $D\sim$ 50–150 m

Jakob Mann Turbulence and Spectra for wind field simulation

- $D\sim$ 50–150 m
- $z_{
 m hub} \sim$ 50–150 m

- $D\sim$ 50–150 m
- $z_{
 m hub} \sim$ 50–150 m
- $0.05 \lesssim f \lesssim 1$ Hz and even higher.

- $D\sim$ 50–150 m
- $z_{
 m hub} \sim$ 50–150 m
- $0.05 \lesssim f \lesssim 1$ Hz and even higher.
- time history in one point not enough

- $D\sim$ 50–150 m
- $z_{
 m hub} \sim$ 50–150 m
- $0.05 \lesssim f \lesssim 1$ Hz and even higher.
- time history in one point not enough
- *u*, but also *v* and *w*.

Wind statistics over flat terrain

• Gaussianity often OK, despite $\langle \delta v_{\parallel}(r)^3 \rangle = -\frac{4}{5} \varepsilon r$.
Wind statistics over flat terrain

- Gaussianity often OK, despite $\langle \delta v_{\parallel}(r)^3 \rangle = -\frac{4}{5} \varepsilon r$.
- Stationarity often OK

Wind statistics over flat terrain

- Gaussianity often OK, despite $\langle \delta v_{\parallel}(r)^3 \rangle = -\frac{4}{5} \varepsilon r$.
- Stationarity often OK
- Homogeneity often OK, at least in the horizontal. $dU/dz = u_*/\kappa z$

Wind statistics over flat terrain

- Gaussianity often OK, despite $\langle \delta v_{\parallel}(r)^3 \rangle = -\frac{4}{5} \varepsilon r$.
- Stationarity often OK
- Homogeneity often OK, at least in the horizontal. $dU/dz = u_*/\kappa z$
- Taylor's hypothesis OK for most practical purposes

Gauss OK \Rightarrow 2. order statistics is everything

Taylor's frozen turbulence hypothesis

$$\tilde{\mathbf{u}}(x, y, z, t) = \tilde{\mathbf{u}}(x - Ut, y, z, 0)$$

Need to know: covariance tensor $R_{ij}(\mathbf{r}) = \langle u_i(\mathbf{x})u_j(\mathbf{x} + \mathbf{r}) \rangle$, the spectral tensor $\Phi_{ij}(\mathbf{k})$

or

One-dimensional spectrum $F_i(k_1) = \frac{1}{2\pi} \int_{-\infty}^{\infty} R_{ij}(x, 0, 0) e^{-ik_1 x} dx$, and cross-spectra $\chi_{ij}(k_1, \Delta y, \Delta z)$ or the coherence $\operatorname{coh}_{ij}(k_1, \Delta y, \Delta x)$

The Sandia method The spectral tensor method

Sandia/Veers simulation method

• Uses spectra and coherences to simulate a mesh of correlated time series

The Sandia method The spectral tensor method

Sandia/Veers simulation method

- Uses spectra and coherences to simulate a mesh of correlated time series
- Choleski decomposition

The Sandia method The spectral tensor method

Sandia/Veers simulation method

- Uses spectra and coherences to simulate a mesh of correlated time series
- Choleski decomposition
- Homogeneity not necessary, but often assumed.

The Sandia method The spectral tensor method

Sandia/Veers simulation method

- Uses spectra and coherences to simulate a mesh of correlated time series
- Choleski decomposition
- Homogeneity not necessary, but often assumed.
- Phases ignored, incompressibility ignored.

The Sandia method The spectral tensor method

The Mann model

The spectral tensor $\Phi_{ij}(\mathbf{k})$ is modelled based on

• Incompressibility $k_i \Phi_{ij}(\mathbf{k}) = 0$

The Mann model

- Incompressibility $k_i \Phi_{ij}(\mathbf{k}) = 0$
- Linearized Navier-Stokes equations close with "eddy life time" considerations (Mann, 1994)

The Mann model

- Incompressibility $k_i \Phi_{ij}(\mathbf{k}) = 0$
- Linearized Navier-Stokes equations close with "eddy life time" considerations (Mann, 1994)
- Small scale isotropy $\Phi_{ij}(\mathbf{k}) = \frac{E(k)}{4\pi k^4} (k^2 \delta_{ij} k_i k_j),$ $E(k) = \alpha \varepsilon^{2/3} k^{-5/3}$ for $k \to \infty$.

The Mann model

- Incompressibility $k_i \Phi_{ij}(\mathbf{k}) = 0$
- Linearized Navier-Stokes equations close with "eddy life time" considerations (Mann, 1994)
- Small scale isotropy $\Phi_{ij}(\mathbf{k}) = \frac{E(k)}{4\pi k^4} (k^2 \delta_{ij} k_i k_j),$ $E(k) = \alpha \varepsilon^{2/3} k^{-5/3}$ for $k \to \infty$.
- Large scale anisotropy, $\sigma_u > \sigma_v > \sigma_w$, $\langle uw \rangle < 0$, $L_u > L_v > L_w$

The Mann model

- Incompressibility $k_i \Phi_{ij}(\mathbf{k}) = 0$
- Linearized Navier-Stokes equations close with "eddy life time" considerations (Mann, 1994)
- Small scale isotropy $\Phi_{ij}(\mathbf{k}) = \frac{E(k)}{4\pi k^4} (k^2 \delta_{ij} k_i k_j),$ $E(k) = \alpha \varepsilon^{2/3} k^{-5/3}$ for $k \to \infty$.
- Large scale anisotropy, $\sigma_u > \sigma_v > \sigma_w$, $\langle uw \rangle < 0$, $L_u > L_v > L_w$
- Notice: Only three parameters: L, $\alpha \varepsilon^{2/3}$, and Γ .

The Sandia method The spectral tensor method

Fourier simulation

$$\mathsf{u}(\mathsf{x}) = \sum \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{x}}\mathsf{u}(\mathsf{k})$$

where

$$\left\langle u_i(\mathbf{k})u_j^*(\mathbf{k}')
ight
angle \propto \Phi_{ij}(\mathbf{k})\delta(\mathbf{k}-\mathbf{k}')$$

The Sandia method The spectral tensor method

Wind simulation

Mathematical basis Examples Discussion and overall conclusion

Constrained simulation

Simulate $\mathbf{v} = \{v_1, v_2, ...\}$ provided that $\sum_{i=1}^{n} \varphi_i v_i = \varphi \cdot \mathbf{v} = f_c$. **Examples:**

• Gust in the middle of the time series: $\varphi_i = 1$ for i = n/2 and zero elsewhere. I.e. the condition is $v_{n/2} = f_c$.

Mathematical basis Examples Discussion and overall conclusion

Constrained simulation

Simulate $\mathbf{v} = \{v_1, v_2, ...\}$ provided that $\sum_{i=1}^{n} \varphi_i v_i = \varphi \cdot \mathbf{v} = f_c$. **Examples:**

- Gust in the middle of the time series: $\varphi_i = 1$ for i = n/2 and zero elsewhere. I.e. the condition is $v_{n/2} = f_c$.
- Velocity jump over 5 time steps: φ_j = -1 and φ_{j+5} = 1. The condition is u_{j+5} u_j = f_c.

Mathematical basis Examples Discussion and overall conclusion

Constrained simulation

Simulate $\mathbf{v} = \{v_1, v_2, ...\}$ provided that $\sum_{i=1}^{n} \varphi_i v_i = \varphi \cdot \mathbf{v} = f_c$. **Examples:**

- Gust in the middle of the time series: $\varphi_i = 1$ for i = n/2 and zero elsewhere. I.e. the condition is $v_{n/2} = f_c$.
- Velocity jump over 5 time steps: φ_j = -1 and φ_{j+5} = 1. The condition is u_{j+5} u_j = f_c.

③ Choose φ to match time scales in the control system.

Mathematical basis Examples Discussion and overall conclusion

Constrained simulation

Most probable v:

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2}\mathbf{v}\cdot\mathbf{Q}\mathbf{v}\\ \text{subject to} & \varphi\cdot\mathbf{v} = f_c \end{array}$$

The solution is the "average gust" \mathbf{v}_{ave} :

$$\mathbf{v}_{ave} = rac{f_c \mathbf{R} arphi}{arphi \cdot \mathbf{R} arphi}$$

Ex: In the continuum limit suppose $\varphi(t) = \delta(t)$. Then

$$v_{ave}(t) = \langle v(t) | v(0) = f_c
angle = rac{f_c}{\sigma^2} R(t)$$

Mathematical basis Examples Discussion and overall conclusion

Constrained Gaussian simulation

To simulate **v** under the constraint $\varphi \cdot \mathbf{v} = f_c$:

- **()** Simulate stationary $\mathbf{v}_s = \{v_{s1}, v_{s2}, ...\}$ with no constraints.
- 2 calculate

$$\mathbf{v}=\mathbf{v}_{s}+rac{f_{c}-arphi\cdot\mathbf{v}_{s}}{arphi\cdot\mathbf{R}arphi}\mathbf{R}arphi$$

v fulfils the constraint $\varphi \cdot \mathbf{v} = f_c$ and is generated at the right rate.

Mathematical basis Examples Discussion and overall conclusion

Example: "Velocity gust"

The stationary gaussian turbulence \mathbf{v}_s is simulated assuming a von Kármán spectrum. The correlation \mathbf{R} is derived from this spectrum.

 $\varphi(t) = \delta(t - 60s)$. f_c is 5 times the standard deviation.

Mathematical basis Examples Discussion and overall conclusion

Larger velocity gust

 $\varphi(t) = \delta(t - 60s)$. f_c is 20 times the standard deviation.

Mathematical basis Examples Discussion and overall conclusion

Example: "Velocity jump"

jump of size $\Delta u(t) \equiv u(t + \Delta t/2) - u(t - \Delta t/2) = 5\sigma_u$ and with $\Delta t = 3$ s

Mathematical basis Examples Discussion and overall conclusion

Generalizations of constrained simulation

More than one component of the velocity.

Mathematical basis Examples Discussion and overall conclusion

Generalizations of constrained simulation

- More than one component of the velocity.
- 2 More than one constraint

Mathematical basis Examples Discussion and overall conclusion

Generalizations of constrained simulation

- More than one component of the velocity.
- 2 More than one constraint
- **3** Time series \rightarrow spatial fields

Mathematical basis Examples Discussion and overall conclusion

Example: "Anisotropic 3D jump" (1:2)

u-turbulence simulation of velocity jump based on the spectral tensor by Mann

Mathematical basis Examples Discussion and overall conclusion

Example: "Strong velocity shear" (1:2)

Shear increases

- Tilt moment on rotor
- Dynamic loads on blades

Mathematical basis Examples Discussion and overall conclusion

Example: "Strong velocity shear" (2:2)

The difference in u at the two black point is 10 m/s.

Mathematical basis Examples Discussion and overall conclusion

Example: "Measured time series" (1:3)

Mast measurements at z = 19, 31, and 42 m (hub).

Mathematical basis Examples Discussion and overall conclusion

Example: "Measured time series" (2:3)

Result of the constrained simulation at z = 19, 31, and 42 m,...

Mathematical basis Examples Discussion and overall conclusion

Example: "Measured time series" (3:3)

... and the entire *u*-field.

Mathematical basis Examples Discussion and overall conclusion

Discussion of simulation

• The nature of extreme wind gusts is probably radically different from Gaussian simulation

Mathematical basis Examples Discussion and overall conclusion

Discussion of simulation

- The nature of extreme wind gusts is probably radically different from Gaussian simulation
- Constrained simulation is also Gaussian, but probabilities of extreme events can be "controlled".

Mathematical basis Examples Discussion and overall conclusion

Discussion of simulation

- The nature of extreme wind gusts is probably radically different from Gaussian simulation
- Constrained simulation is also Gaussian, but probabilities of extreme events can be "controlled".
- There is a myriad of other ways to simulate extreme events...

Mathematical basis Examples Discussion and overall conclusion

Discussion of simulation

- The nature of extreme wind gusts is probably radically different from Gaussian simulation
- Constrained simulation is also Gaussian, but probabilities of extreme events can be "controlled".
- There is a myriad of other ways to simulate extreme events...
- for example Rosales & Meneveau (2006, 2008)
Recapitulation of Part I Simulation methods Constrained simulation Mathematical basis Examples Discussion and overall conclusion

Conclusion

- The spatial structure is important for loads on turbines
- Turbulence is quite well described over flat homogeneous terrain/sea under neutral atmospheric stratification.
- Turbulence is very dependent on stability and on the terrain
- There is no simple connection between the terrain and the turbulence.
- Constrained simulation can incorporate extreme events in stochastic fields

Exercise

- Download and install the IEC turbulence simulator http://www.wasp.dk/Products/weng/ IECturbulenceSimulator.htm
- Simulate and display a turbulence field
- Investigate the meaning of the many parameters