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Actuator disc/line models

Basic elements of the model:

Flow governed by Navier-Stokes equations
 Influenceofrotorintroducedthroughbodyforces

« Bodyforcesdetermined either from axial drag force or
from blade element theory using tabulated airfoil data

 Needstobecombined with LES

 No limiting scalerestrictions:

- Large scales created by body forces

- Small scales feeded by larger scales

- Small scales die out through dissipatation 01U
o
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The actuator line technique

Basic idea: « Replace rotor blades by body forces
e Determine body forces from aerofoil data

« Simulate flow domain using DNS or LES

Body forces
Inflow Outflow
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Mixed scale SGS model

Mixed Scale mOdel Resolved scales Unresolved scales
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a = 1 equation transforms to equation from Smagorinsky model.
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Scale requirements in wind energy

Turbulent scales:

Length Velocity Time scale
scale (m) scale (m/s) (s)

Airfoil boundary

layer 10°3 10° 107
Airfoll 1 102 10—2
Rotor 102 10 10

Cluster 103 10 102
Wind farm 104 10 103
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Aerodynamic Computations

Requirements for Direct Navier-Stokes computations:

Smallest turbulent length scale: f Reynolds Number: Re=L-UWN,
Largest geometrical length scale: L where

L: Length of object
Estimate based on scales: U: Typical velocity
L/ £ =~ Re**(3/4) v: Kinematic viscosity

Number of mesh points: N = (L/f)**3 = Re**(9/4)
Typically Re = O(10**6) - O(10**7), thus N = O(10**15)

Computing performance is generally 10-doubled every 5 years, hence
full DNS simulations can be anticipated in about (15-8) x 5 = 35 years.

>
Department of Mechanical Engineering >
Technical University of Denmark >



Aerodynamic Computations

Wakes and clusters:

No. Mesh CPU-time Comments
points

O(10**6) Both axisymm. and 3D
AD-NS O(10**5) <1h Polar coordinates
RANS O(10**7) < 10h Steady
DES 0O(10**8) <1 week 3D-Unsteady
AL-LES 0O(10**8) < 1 week Airfoil data required
LES O(10**12) N/A 3D-unsteady
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Actuator disc/line model

Extensions of the model:

Shear and veer can be introduced through body forces
(analogous to immersed boundary conditions)

 Ambientturbulenceintroduced as a numerical
turbulence lattice through body forces

« Themodelis can easily be coupledto an aeroelastic
code, e.g. Flex5, enabling detailed aeroelastic
computations

« Atmospheric boundary layer stability can be
Introduced through the energy equation
DTU
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The Actuator Line Technique

« Regular 3D Grid
« V., — Linear interpolation

. No tip correction is applied
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Aerodynamic Forces

Evaluation of velocities
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Evaluation of aerodynamic forces
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Actuator Disc/Line Model
2D Airfoll data
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Actuator Disc/Line Model
Suggested 3D corrections for airfoil data

Correction for rotational effects (AoA < 20 degrees):
Csp=Ciapt a(c/r)” I:Cf,fmr B CI._ZD:.

Correction for finite rotor size (AoA > 45 degrees):
C =C, cos¢+C,sing=C,(cx =90")
C.=C,sing—C,cos¢gp>0

Linear interpolation for 20 degrees < AoA < 45 degrees
DTU
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Actuator Disc/Line Model
Dynamic stall

Dynamic stall Is caused by:

* Wind shear

Atmospheric turbulence

Tower shadow

Rotors operating in yaw or tilt
Dynamically deflected blades
Turbine placed on floating structure
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Actuator Disc/Line Model
Dynamic stall model (dye)

f =0: Fully separated
f =1: Fully attached

Linear interpolation: S
CL(f)=27z(a—a0)- f +CL Sep-(l— fl=
fstatic = (L static ~CLsep! (@@ %) C  sep)
Dynarpic apprfoach: Final algorithm:
df _ “static” ' - At
dt 3 =t (g~ Totatic) exp[ ]
DTU
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2~ Fluid Mechanics

Wind Shear and Turbulence

Wy (C,y° +Cy) Y<A f = rhu+ pe
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Wind turbine
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Vortex structures in the wake of a row of rotors

Developmentofwake behind threerotorsin arow at W, =10 m/s; Turbine
spacing6rotor radii. A) Constantinflow; B) Turbulentinflow.
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Simulation of turbulence inside wind farm

Basic idea: « Replace rotor blades by body forces
e Determine body forces from aerofoil data

« Simulate an 'infinite’ row of turbines using
cyclic boundary conditions

Body forces
Cyclic b.c. ’ Cyclic b.c.

Danmarks Tekniske Universitet D]’U
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Simulation of turbulence inside wind farm

Cross sectional turbulent flow fields:

|so-vorticity contours in the final stage
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