LES and Actuator Line Model

by

J. N. Sørensen, R. Mikkelsen, N. Troldborg, S. Ivanell, W.Z. Shen

DTU Mechanical Engineering

Actuator disc/line models

Basic elements of the model:

- Flow governed by Navier-Stokes equations
- Influence of rotor introduced through body forces
- Body forces determined either from axial drag force or from blade element theory using tabulated airfoil data
- Needs to be combined with LES
- No limiting scale restrictions:
 - Large scales created by body forces
 - Small scales feeded by larger scales
 - Small scales die out through dissipatation

The actuator line technique

Basic idea: • Replace rotor blades by body forces

- Determine body forces from aerofoil data
- Simulate flow domain using DNS or LES

Mixed scale SGS model

Mixed scale model:

 $\alpha = 1$ equation transforms to equation from Smagorinsky model.

Scale requirements in wind energy

Turbulent scales:

	Length scale (m)	Velocity scale (m/s)	Time scale (s)
Airfoil boundary layer	10^{-3}	10 ²	10^{-5}
Airfoil	1	10^{2}	10^{-2}
Rotor	10^{2}	10	10
Cluster	10^{3}	10	10^{2}
Wind farm	10^{4}	10	10^{3}

Aerodynamic Computations

Requirements for Direct Navier-Stokes computations:

Smallest turbulent length scale: ℓ Largest geometrical length scale: L

Estimate based on scales: L/ $l \approx \text{Re}^{**}(3/4)$ Reynolds Number: $Re=L \cdot U/v$, where

- L: Length of object
- U: Typical velocity
- v: Kinematic viscosity

```
Number of mesh points: N \approx (L/\ell)**3 = Re**(9/4)
```

```
Typically Re = O(10^{**}6) - O(10^{**}7), thus N = O(10^{**}15)
```

Computing performance is generally 10-doubled every 5 years, hence full DNS simulations can be anticipated in about $(15-8) \times 5 = 35$ years.

Aerodynamic Computations

Wakes and clusters:

	No. Mesh points	CPU-time	Comments
PNS	O(10**6)	< 1h	Both axisymm. and 3D
AD-NS	O(10**5)	< 1h	Polar coordinates
RANS	O(10**7)	< 10h	Steady
DES	O(10**8)	< 1 week	3D-Unsteady
AL-LES	O(10**8)	< 1 week	Airfoil data required
LES	O(10**12)	N/A	3D-unsteady

Actuator disc/line model

Extensions of the model:

- Shear and veer can be introduced through body forces (analogous to immersed boundary conditions)
- Ambient turbulence introduced as a numerical turbulence lattice through body forces
- The model is can easily be coupled to an aeroelastic code, e.g. Flex5, enabling detailed aeroelastic computations
- Atmospheric boundary layer stability can be introduced through the energy equation

The Actuator Line Technique

- Regular 3D Grid
- $V_{r\theta z}$ Linear interpolation
- No tip correction is applied

Forces smearing

 $\mathbf{f}(\mathbf{x}) = \sum_{i=1}^{B} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathbf{F}^{i}(s)\eta(p^{i}) dn dt_{1}$

DTU

Aerodynamic Forces

Evaluation of velocities

$$\phi = \tan^{-1} \left(\frac{V_n}{\Omega r - V_{\theta}} \right), \quad \alpha = \phi - \gamma$$
$$V_{rel}^2 = V_n^2 + (\Omega r - V_{\theta})^2, \quad V_n = V_z$$

Evaluation of aerodynamic forces

$$\begin{cases} \mathbf{L} \\ \mathbf{D} \end{cases} = \frac{1}{2} \rho V_{rel}^2 c B \begin{cases} C_L(\alpha, \operatorname{Re}) \mathbf{e}_L \\ C_D(\alpha, \operatorname{Re}) \mathbf{e}_D \end{cases},$$

 $F_z = L\cos\phi + D\sin\phi, \quad F_\theta = L\sin\phi - D\cos\phi$

Smearing of forces

$$\mathbf{f}_{\varepsilon} = \mathbf{f} \otimes \eta_{\varepsilon}, \quad \eta_{\varepsilon}(p) = \frac{1}{\varepsilon \sqrt{\pi}} e^{-\left(\frac{p}{\varepsilon}\right)^{2}} \Rightarrow \mathbf{f}_{\varepsilon}(r, z) = \int_{-\infty}^{+\infty} \frac{\mathbf{F}(r, z)}{\varepsilon \sqrt{\pi}} e^{-\left(\frac{p}{\varepsilon}\right)^{2}} dz, \quad p = z_{d} - z$$

2D Airfoil data

Suggested 3D corrections for airfoil data

Correction for rotational effects (AoA < 20 degrees): $C_{l,3D} = C_{l,2D} + a(c/r)^{b} \left[C_{l,inv} - C_{l,2D} \right]$

Correction for finite rotor size (AoA > 45 degrees): $C_n = C_l \cos \phi + C_d \sin \phi = C_d (\alpha = 90^0)$ $C_t = C_l \sin \phi - C_d \cos \phi > 0$

Linear interpolation for 20 degrees < AoA < 45 degrees

Dynamic stall

Dynamic stall is caused by:

- Wind shear
- Atmospheric turbulence
- Tower shadow
- Rotors operating in yaw or tilt
- Dynamically deflected blades
- Turbine placed on floating structure

Dynamic stall model (Øye)

f = 0: Fully separated f = 1: Fully attached

Linear interpolation:

$$\begin{split} & C_L(f) = 2\pi(\alpha - \alpha_0) \cdot f + C_{L,sep} \cdot (1 - f) \Rightarrow \\ & f_{static} = (C_{L,static} - C_{L,sep}) / (2\pi(\alpha - \alpha_0) - C_{L,sep}) \end{split}$$

Dynamic approach:
$$df = \frac{f_{static} - f}{f_{static}}$$

τ

Final algorithm:

$$f_i = f_{i-1} + (f_{i-1} - f_{static}) \cdot \exp\left(-\frac{\Delta t}{\tau}\right)$$

Department of Mechanical Engineering Technical University of Denmark

dt

Wind Shear and Turbulence

Power law wind shear profile

 $L_2 = N_2 \Delta L_2$

Model of wind turbulence

UIU

Vortex structures in the wake of a row of rotors

Development of wake behind three rotors in a row at $W_0 = 10$ m/s; Turbine spacing 6 rotor radii. A) Constant inflow; B) Turbulent inflow.

DTU

Validation: Nørrekær Enge II

DTU

Turbulence intensity of axial velocity component

DTU

Sexbierum

Reynolds-stresses

Department of Mechanical Engineering Technical University of Denmark

DTU

Nibe

Technical University of Denmark

Simulation of turbulence inside wind farm

Basic idea: • Replace rotor blades by body forces

- Determine body forces from aerofoil data
- Simulate an 'infinite' row of turbines using cyclic boundary conditions

Danmarks Tekniske Universitet

Simulation of turbulence inside wind farm

Cross sectional turbulent flow fields:

Iso-vorticity contours in the final stage

