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LES and turbulence

Characteristics of turbulence:

« Random fluctuations

It contains eddies of many sizes (from the shear layer
thickness 6 to the Kolmogorov length scale )

o Self sustaining
* Generated by velocity gradients

« Dissipative

e Mixing DTU
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Turbulent wakes in wind energy
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LES and turbulence
Turbulence spectrum:

Resolved scales Unresolved scales
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LES and turbulence
FIOW reSOIUtion: Subgrid Scale Scales (SGS)
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Scale requirements in wind energy

Turbulent scales:

Length Velocity Time scale
scale (m) scale (m/s) (s)

Airfoil boundary

layer 10°3 10° 107
Airfoll 1 102 10—2
Rotor 102 10 10

Cluster 103 10 102
Wind farm 104 10 103
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LES in Wind Energy
Why not use DNS:

Smallest turbulent length scale: f Reynolds Number: Re=L-UWN,
Largest geometrical length scale: L where

L: Length of object
Estimate based on scales: U: Typical velocity
L/ £ =~ Re**(3/4) v: Kinematic viscosity

Number of mesh points: N = (L/f)**3 = Re**(9/4)

Typically Re = O(10**6) - O(10**7), thus N = O(10**15)

Computing performance is generally 10-doubled every 5 years, hence
realible aerodynamic computations can be anticipated in about
(15-7) x5 = 40 years

Thus, turbulence modellingisrequired DTU
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LES in wind energy
Why not (always) use RANS:

Wind turbine blade, 19.1 meter, suction side

Lrading =elge

Trailing cdem—""
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Basics of LES
Conceptual steps in LES:

(1) A filtering operation is defined to decompose the velocity U(x, t) into
the sum of a filtered (or resolved) component Ul(x,t) and a residual
(or subgrid-scale, SGS) component u'(x, ¢). The filtered velocity field
U(x, t) — which is three-dimensional and time-dependent — represents
the motion of the large eddies.

(i) The equations for the evolution of the filtered velocity field are
derived from the Navier—Stokes equations. These equations are of the

standard form, with the momentum equation containing the residual-
stress tensor (or SGS stress tensor) that arises from the residual

motions.

(iii) Closure is obtained by modelling the residual-stress tensor, most
simply by an eddy-viscosity model.

(iv) The model filtered equations are solved numerically for U(x, t), which
provides an approximation to the large-scale motions in one realiza-

tion of the turbulent flow. DU
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Basics of LES

DNS and resolution in LES:

Table 13.1. Resolution in DNS and in some variants of LES

Model Acronym  Resolution |
Direct numerical simulation DNS Turbulent motions of all scales are
fully resolved -
Large-eddy simulation with LES-NWR  The filter and grid are sufficiently
near-wall resolution fine to resolve 80% of the energy
\ everywhere |
Large-eddy simulation with LES-NWM  The filter and grid are sufficiently fine
near-wall modelling to resolve 80% of the energy remote
from the wall, but not in the near-wall

region
Very-large-eddy simulation VLES The filter and grid are too coarse to

resolve 80% of the energy
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Filtering
General definition of filter:

Ul(x,t) = / G(r,x)U(x —r,t)dr,

where /G(V, x)dr = 1.

Residual field:  #(x,t) = U(x,t) — U(x, t),
Decomposition: U(x,t) = U(x,t) + u/(x,)

Remark that #/'(x,t) # 0 DTU
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Features of filtering

Remark that #'(x,t) & 0

Filtering and differentiation w.r.t. time commute:
oU _ (U
ot \ ot )

Filtering and takina means commute:

Differentiation w.r.t. space gives:

U, oU, _
— ( )+/U,-(x—r,t) oG, %) 4,

hé;; an axj
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Examples of filters used in LES

Technical University of Denmark

Name | Filter function Transfer function
General G(r) G(x) = / e G(r) dr
‘ —C0
1 sin(%ch)
. 6 \'"* 612 K2A?
Gaussian (n_A_f) eXp (”"A"i" exp (—- 2 )
i A
Sharp spectral Em(—z:éml H(xo — |x]),
Ke=m/A
Cauch ¢ o= = exp(—aAlx|)
’ rAlr /AR + ) T P
2/3
Pao exp (-—--%Z(AIK})‘W)
DTU
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Filtering In LES
Examples of 1-D filters:
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Fig. 13.1. Filters G(r): box filter, dashed line; Gaussian filter, solid line; sharp spectral DTU
filter, dot—dashed line. PG
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Filtering In LES
Example of 1-D filtering of velocity field:

0 2 4 6 8 10
X
Fig. 13.2. Upper curves: a sample of the velocity field U(x) and the corresponding
filtered field U(x) (bold line), using the Gaussian filter with A = 0.35. Lower curves: D'I'U
the residual field /(x) and the filtered residual field #/(x) (bold line). -
Department of Mechanical Engineering >

Technical University of Denmark



Filtering In LES
The filtered energy spectrum:

Autocovariance: R(r) = (u(x + rju(x))

1-D spectrum: Eii(x) = -71; / R(r)e ™ dr.

0

Filtered spectrum: E () = |G(x)[*E11(x)

Transfer function: G(x) = / G(r)e ™ dr = 2rF{G(r)}
DTU
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Filtering In LES
Attenuation factors:
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Fig. 13.4. Attenuation factors @(K)z: box filter, dashed line; Gaussian filter, solid line;
sharp spectral filter, dot—dashed line. :
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Filtering In LES

Filtered energy spectrum:
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Fig. 13.5. The one-dimensional spectrum E;;(x) (solid line) obtained for the model

spectrum at R; = 500; and the filtered spectrum E;;(x) (dashed line) obtained using
the Gaussian filter with A = 1L4,. []TU
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Filtering of conservation equations

Filtered continuity equation:

. U. ou, 0 —
(Yo Ty =2 )=

0x; 0X; ’ 0x; 0

Filtered momentum equation:

0v; UT; _ | 8T, _1op
ot axi @x,- ax,- p xj‘
Residual stress tensor: 7;; = U;U; — U, U,

Final form of filtered momentum equation:
-D_—l—]—j . azﬁj o1, 1 8{9

— Vo——— — = — - —
Dt @xi axf 6361‘ P an []'I'U
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Residual stresses

- - - . — R 2
Anisotropic residual stress tensor: Ty = Ty — gkréfj.

R
ii

Residual kinetic energy: k., = =7

N =

Decomposition: U,U; = U,U; + fcg
1:5 =L +C; + RS

Leonard stresses: Ly =U,U;—UU;
Cross stresses: Ci=Uw;+uU; — Uu, —u, U;
. O — o/ar  ai o
SGS Reynolds stresses: R;; = tu; — u; U] 0Tl
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The Smagorinsky model

Eddy-viscosity model: 7;; = —2v,S;

Mixing length anzats: v, = é’ég = (CsA)’S

~ 1/0U;, 20U, —_ _
j i

Transfer of energy to residual motions:

— — = —2
_— r _— —
731. = mTijfj = ZVrSijSij — VIS
DTU
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The Smagorinsky constant

Behaviour In the inertial subrange:
—2 —3
e=(P) =S )= é%(S )
Assume Kolmogorov spectrum:
(32) ~ 2 / zcza(x)2C82/3rc_5/3 dx = a;Ce?*A™?
where  ar 52/ (kA) G (xc)*A dk
0

Assuming a sharp spectral filter: dr = %n4/3

T

_ —1/2
A ) 65 1/ 2\
We get- €S _ (Caf)3/4 (<§2>3/2) or. CS — "A— - (“‘——) ~ 0.17.‘
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The Smagorinsky filter

~ E(o)\ 2
Filter transfer function: G(x) = (E(;))

Assume e.g. Pao’s model spectrum:

E(x) = f1(cL)Ce*’x ™ exp[—3 C(ien)*]

We get a(}c) = exp[_%cx4/3(ﬁ4/3 _ 1,]4/3)]

3\ 1/4 1/2
where 7= ((v+vf) ) =€s(1+1)

& Vi

Smagorinsky constant:

7l/2 18C /5 \4/3 1/4 Tn 4/37 1/
Co = iy s ~ 0.15(1 —
> (ascyn [“’nw (3) J +(A) DT
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LES and turbulence
FIOW reSOIUtion: Subgrid Scale Scales (SGS)
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Resolved Scales
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Resolved scales

Mixed scale model:

Unresolved scales
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a = 1 equation transforms to equation from Smagorinsky model.
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