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1 Linear motion of spar turbine

A moored spar buoy may be used as support of an offshore wind turbine. The buoy is a
slender vertical circular cylinder of large draft. It is moored with slack mooring lines. That
they are slack means that there role is merely to keep the wind turbine in position rather
than restricting its linear reponses to the wave forces and wind gusts. A spar buoy is used
to support the Hywind wind turbine.

1.1 Example. Data of Statoil’s Hywind, source: Internet

2.3 MW turbine size
138 tons, turbine weight
65 m, turbine height
82.4 m, rotor diameter
100 m, hull draft
5300 m3, displacement
6 m, diameter water line
8.3 m, diameter, submerged body
100-170 m, water depths

1.2 Wave and wind loads

The incoming wave field imposes an exciting force acting on the wetted surface of the floating
spar buoy. This force can be modelled by

Fwave = Re[
∑

n

]AnX
wave(ωn, θn)e

iωnt] = Re

∫ ∫

dAXwave(ω, θ)eiωt] (1)

The wind force Fwind is discussed elsewhere in the course. The sum of the wave and wind
force acting on the spar buoy and the turbine results in motions of the structure.

1.3 Analysis in the frequency plane

We first analyze the forces imposed by the incoming waves, diffracted and radiated waves,
including mass and added mass effects. The analysis is best carried out in the frequency
plane, where the forces and motions are analyzed at the individual frequency. The complete
motion is analyzed in the end, where we return to from the frequency domain to the time
domain.

It is convenient to introduce a frame of reference which is fixed in space, where (x1, x2) are
in the horizontal plane and y vertical upward. We will sometimes use x1 = x and x2 = z.

The wave and wind excitation are considered in the frequency plane where also the body
responses are evaluated. The wave force reads

Fwave
1

= Re(Xwave
1

eiωt) (2)
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Xwave
1

denotes the wave exciting force due to a wave of frequency component ω and amplitude
A and Re means real part. In a linear analysis the wave force given in (2) acts on the body
in its mean position. The force acts on the symmetrical circular cylinder along the wave
propagation direction.

The linear wave exciting force may be given by the McCamy-Fuchs solution. In the case of a
slender cylinder it may be given approximately from the inertia term in Morison’s equation
which gives that Xwave

1
= 2πρgR2A where a complex phase is included in the amplitude A.

In the slender cylinder range the two estimates of the force are numerically very close. The
approaches are discussed elsewhere in the course.

We assume that the body is exposed to wind and waves moving along the positive x-direction.
Further, the body response is composed by oscillations along the x-direction (surge) and
about the x2-axis (pitch) given by

ξ̂1(t) = Re(ξ1e
iωt), ξ̂6(t) = Re(ξ6e

iωt).

1.4 Equation of motion. Wave and hydrodynamic effects

Conservation of momentum along the x-axis gives

[−ω2(M11 + a11) + iωb11 + c11]ξ1 + [−ω2(M16 + a16) + iωb16 + c16]ξ6 = Xwave
1

+Xwind
1

. (3)

Similarly, conservation of angular momentum with respect to the x2-axis gives

[−ω2(M61 + a61) + iωb61 + c61]ξ1 + [−ω2(M66 + a66) + iωb66 + c66]ξ6 = Xwave
6

+Xwind
6

. (4)

In (4) Xwave
6

and Xwind
6

are moments due to the waves and the wind. In (3) and (4) terms
represent

M11 total mass m = ρV of the floating structure

a11 added mass of the spar buoy, in surge

M66 = I66 moment of inertia

a66 added moment of inertia

b11, b66 coefficients determining the damping due to waves and wind

c11 restoring force coefficient in the horizontal direction (moorings)

c66 = ρgV [(S11/V ) + yb − yg] + cmoorings
66

≃ mg[yb − yg] + cmoorings
66

restoring moment

M16 = M61, a16 = a61, b16 = b61, c16 = c61 cross coupling coefficients

In the equations aboveM11 = m = ρV is the mass of the structure which equals the displaced
water mass given by ρV , ρ density of the water and V submerged volume.

a11 denotes added mass corresponding to the inertia force of the accelerated fluid due to
the oscillations in surge. A (horizontal) section of the spar buoy has an added mass of
ρπR2 where R the radius, assuming a strip theory approach. Assuming constant radius of
the spar buoy and that h2 is its draft, the added mass of the submerged volume becomes
a11 = ρπR2h2 = ρV = m.

b11 denotes the damping coefficient of the surge motion. For pure wave radiation this rep-
resents a damping force due to the outward going waves caused by the body motion. The
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pure wave damping coefficient is very small since the sylinder is slender (kR << 1). It may
be shown that with only wave radiation ωb11 = π2ρgk2R4. This is very small compared to
the mass plus added mass terms and is not essential in the analysis.

b66 denotes the damping coefficient of the yaw motion. Its contribution from the waves is
small but positive.

The damping coeffients due to the coupling between the body responses and the wind force,
which are negative damping forces, have been analyzed above.

The mass coupling term is M16 = −myg where yg denotes the center of gravity. a16 ≃
−πρR2 1

2
h2

2
= −myb denotes the added mass cross coupling term between modes 1 and 6 and

yb = −1

2
h2 denotes the vertical coordinate of the buoyancy center of the submerged part

of the structure. It is convenient to define the vertical position y0 = 1

2
(yg + yb). The sum

M16 + a16 then becomes −2my0.

The restoring force coefficient c11 is caused by the mooring lines which are slack and which
introduce forces of magnitude comparable to the second order in the incoming wave ampli-
tude. This means that c11 is much smaller than the inertia terms in the equation and is
neglected in the present analysis.

The restoring force due to buoyancy and gravity forces are, in the yaw mode of motion,

c66 ≃ mg(yb − yg),

where yb and yg denote the vertical positions of the center of bouyancy of the spar buoy and
center of gravity of the structure, respectively. The distance yb − yg denotes the metacentric
height and is positive. This difference is usually a small fraction of the draft (h2) of the
spar, i.e. yb − yg = β1h2 where β1 is typically 0.1-0.2. (The usual waterplane moment in the
metacentric height is small for a slender vertical cylinder of deep draft and is omitted.

1.5 Example. Resonant periods of Hywind

At resonance the restoring and inertia forces are in balance, giving in surge

ω2

0
=

c11
m+ a11

.

The resonance of Hywind in surge/sway is 120 seconds corresponding to a resonance fre-
quency of ω0 = 0.052 s−1. This determines the horizontal restoring force coefficient by
c11 = ω2

0
(m+ a11)m = 5.4 · 10−3 ·m with dimension m−1.

Resonance in yaw. We assume that the effect of the moorings are much weaker than the
effects of buoyancy and gravity, which is reasonable, referring to the low resonance frequency
in surge/sway. Neglecting the mooring force, the resonance frequency in the yaw mode of
motion is then approximated by

ω2

0
=

mg(yb − yg)

I66 + a66
.

As above yb − yg = β1h2. The sum of the moment of inertia and added moment of inertia
may be written by β2mh2

2
where β2 is typically in the range 0.2-0.3. The resonance frequency

then becomes ω2

0
= β1g/β2h2.
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With β1 = 0.1 and β2 = 0.2 the resonance frequency squared becomes ω2

0
= 0.05s−2 and

resonance period T = 28 sec.

With β1 = 0.2 and β2 = 0.3 the resonance frequency squared becomes ω2

0
= 0.067s−2 and

resonance period T = 24 sec.

For comparison, the resonance period in yaw of Hywind is 25 sec.

1.6 Evaluation of the responses

We consider the equations of motion where the moments are evaluated with respect to the
vertical position y0 =

1

2
(yb+ yg). We disregard for the moment the effects of c11, b16 and c16.

For surge and yaw we get, approximately, with the wind excitation included below,

−2mω2ξ1 =
2mg

h2

A (5)

[−ω2(M66 + a66) +mg(yb − yg)]ξ6 = AXwave
6

. (6)

where

Xwave
6

= 2πρgR2A
(1

k
+ y0

)

(7)

Multiplying the equations by eiωt and summing over all frequencies and wave angles, the
equations may alternatively be obtained in the time domain. Including the wind force we
find

2mξ̈1 =
2mg

h2

η(t) + Fwind(t) (8)

β2mh2

2
ξ̈6 +mgβ1h2ξ6 =

2mg

h2

(

y0η(t) + Re
∑

n

An

kn
eiωnt

)

+Mwind
6

(t) (9)

where |An| = (2S(ωn)∆ωn)
1

2 , 0 < arg(An) < 2π and Mwind
6

(t) denotes the moment with
respect to y0 due to the wind. In the equation above we have also used M66 + a66 = β2mh2

2

and mg(yb − yg) = mgβ1h2.

1.7 Example

Assume that the incoming waves are swells and that the wind is smooth with weak gusts.
Then

ξ1
A

≃ −
1

kh2

= −
λ

2πh2

ξ6Y

A
≃

Y/h2

β2(−1 + ω2

0
/ω2)

λ

πh2

( λ

2πh2

+
y0
h2

)

If λ/πh2 ∼ 1, β1 = 0.2, β2 = 0.3 we obtain ξ1/A ∼ −1

2
and ξ6Y/A ∼ 0.6, which means that

the horizontal excursions of the wind turbine is about the same as the wave amplitude.
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1.8 Responses in irregular waves and wind gusts

We may assume that the variables representing the wave field and wind gusts are independent
stochastic variables, each of them with zero mean and non-zero variance, but with zero cross
coupling. The body responses are then splitted into two parts, each of them either caused
by the wave field or the wind gusts. Let

ξ̂1(t) = ξ̂wave
1

(t) + ξ̂wind
1

(t) (10)

and similarly for the response in the yaw mode of motion. For the wave part we obtain by
linear superposition

ξ̂wave
i (t) = Re

∫ ∫

(ξwave
i /A)(ω, θ)eiωtdA (11)

and similarly for the wind part which is discussed elsewhere in the course.

By evaluation of the expectation of the variables squared we obtain

E[(ξ̂wave
i )2] =

∫

∞

0

∫

2π

0

Swave(ω, θ)|(ξ
wave
i /A)(ω, θ)|2dωdθ (12)

where Swave(ω, θ) denotes the wave spectrum and (ξwave
i /A)(ω, θ) response amplitude oper-

ator.

Similar result is obtained for the wind induced motion and is obtained elsewhere in the
course.
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