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Wind Energy
Various wind turbines :
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Wind Energy
The Danish Concept:

3-bladed upwind 
machine with gearbox 
and asynchroneous 
generator
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Wind Energy
The worlds largest wind turbine
Enercon 126: P=6MW; D=126m
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Wind Energy
Development in wind turbine technology :
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Wind turbine
Nacelle :

Rotorblade

Hub Tower

Main 
shaft

Gear

Mechanical Brake

Generator

Spinner
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Wind Energy

How does a wind turbine work? 

• The wind hits the rotor plane

• The combinition of wind speed and
blade rotation results in a pressure
distribution on the rotor blades

• The pressure distribution causes a
turning moment (torque)

• The turning moment rotates the shaft

• The shaft is coupled to a generator
that produces electrical power
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Wind Energy
Aerodynamic forces:
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Wind Energy
Aerodynamic forces and geometry :
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Wind Energy
Pressure and forces on aerofoil:
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Wind Energy
Blade-Element MomentumTheory:

• The rotor is divided into independent
stream tubes

• Aerodynamic forces determined from
aerofoil data

• Induced velocity determined from
generel momentum theory

• Correction for finite number of blades
using Prandtl tip-correction

• Various ad-hoc corrections for
off-design operating conditions 
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The Optimum Rotor                                                                      

• What is the optimum number of blades ?

• What is the optimum operating condition (TSR)?

• What is the maximum efficiency?
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Wind Turbine Rotor Aerodynamics
What is the optimum number of blades?

3 blades ?

many blades ?

2 blades ?

1 blade ?
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Why 3 blades?

• Aerodynamics: Close to optimum

• Structural-dynamics: No gyroscopic forces in yaw

• Estetics: Harmonic rotation

• Historics: Tradition of the ’Danish Concept’
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Optimum rotor with infinite number of blades
1-D Axial momentum theory:
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Optimum rotor with infinite number of blades
Generel momentum theory:
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Condition for optimum operation:

Euler’s turbine equation:

0.5 0.288
1.0 0.416
1.5 0.480
2.0 0.512
2.5 0.532
5.0 0.570
7.5 0.582

10.0 0.593
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Two definitions of the ideal rotor

Joukowsky
(1912)

Betz
(1919)

blade span 

Γ(r)

R 0

V w const− =constΓ =
V w−

In both cases only conceptual ideas were outlined for rotors with finite number of blades,
whereas later theoretical works mainly were devoted to rotors with infinite blades!

blade span 

Γ

R0
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Betz’ condition for maximum efficiency
of a rotor with a finite number of blades

Maximum efficiency is obtained when the pitch of the trailing 
vortices is constant and each trailing vortex sheet translates 
backward as an undeformed regular helicoidal surface
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Induced velocities:
Movement of vortex sheet with 
constant pitch and constant 
velocity 

wΦ2
z coswu =

ΦΦθ sincoswu =

Axial induced velocity:

Tangential induced velocity:
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Pitch:
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Optimum lift distribution:
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Kutta-Joukowski theorem:
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The optimum rotor:
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Comparison of maximum power coefficients
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Solution of Betz rotor 
(Okulov&Sørensen, 2008)

Solution of Joukowsky rotor 
(Okulov & Sørensen, 2010)
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Optimum 3-bladed rotor with losses:

From C. Bak: J. Physics: Conference Series, vol. 75, 2007
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Wind Energy
Wind turbine performance :
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Control and regulation of wind turbines

Stall control

Active Stall control

Pitch control

Variable speed
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Stall-regulated wind turbine:
Computed power curve
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Wind Turbine
Modern Wind Turbine :
• Pitch-regulated
• P=2 MW; D=90 m
• Nom. Tip speed.: 70 m/s
• Rotor: 38t, Nacelle: 68t; Tower: 150t
• Control: OptiSpeed; OptiTip
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Wind Turbine Aerodynamics
Need for models capable of coping with:
• Dynamic simulations of large deformed rotors

• Complex geometries: Rotor tower interaction

• Adjustable trailing edge flaps

• Various aerodynamic accessories, such as vortex generators, 
blowing, Gourney flaps and roughness tape

• 3-dimensional stall including laminar-turbulent transition

• Unsteady, three-dimensional and turbulent inflow

• Interaction between rotors and terrain

• Complex terrain and wind power meteorology 

• Offshore wind energy: Combined wind and wave loadings
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Blade Element Momentum Model
Basic ingredients of the BEM model:

• Based on 1-D momentum theory assuming annular independency

• Loading computed using tabulated static airfoil data

• Dynamic stall handled through ’dynamic stall’ models

• 3-dimensional stall introduced through modifications

• Tip Flows based on (Prandtl) tip correction

• Yaw  treated through simple modifications

• Heavily loaded rotors treated through Glauert’s approximation

• Wakes and park effects  modelled using axisymmetric momentum 
theory
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Blade Element Momentum Model
Advantages of using the BEM model:

The BEM model is today the industrial standard used by all
producers of wind turbines and wind turbine blades 

• Extremely fast on a PC

• Can in principle cope with all flow situations

• Easy to couple with an aeroelastic conde, such as Flex

• Easy to couple with turbulent inflow model

• Many years of experience in using the model

• Performs very well at design conditions

• Capable of delivering results at off-design conditions
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Blade Element Momentum Model

Blade element
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Airfoil data:
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Blade Element Momentum Model

Induced velocity:

Velocity triangle:
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Blade Element Momentum Model

Induced velocities:

Axial momentum balance:

Moment of momentum balance:

Combining blade element and
and momentum expressions:

Solidity:
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Blade Element Momentum model
How good is the assumption of annular independency?
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Blade Element Momentum Model
The Tip correction

The tip correction, F, corrects the axisymmetric approach to
account for a finite number of blades:

Prandtl tip correction formula:

Modified expressions:
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Blade Element Momentum Model
Other corrections

Heavily loaded rotors: for a < 1/3

for a > 1/3

Yaw correction:

Dynamic wake:
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Blade Element Momentum Model
2D Airfoil data

DU-93-W-210
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Blade Element Momentum Model
2D Airfoil data

FFA-W3-241
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Blade Element Momentum Model
Suggested 3D corrections for airfoil data

Correction for rotational effects (AoA < 20 degrees):

Correction for finite rotor size (AoA > 45 degrees):

Linear interpolation for 20 degrees < AoA < 45 degrees
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Blade Element Momentum Model
Computed 3D airfoil data
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Blade Element Momentum Model
Dynamic stall
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Blade Element Momentum Model
Dynamic stall

Dynamic stall is caused by:

• Wind shear
• Atmospheric turbulence
• Tower shadow
• Rotors operating in yaw or tilt
• Dynamically deflected blades
• Turbine placed on floating structure 
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Blade Element Momentum Model
Dynamic stall model (Øye)

Attached flow

Fully separated flow

Actual flow
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Blade Element Momentum Model
Dynamic stall model (Øye)

: Fully separated
: Fully attached

Linear interpolation:
( ) 2 ( ) (1 ),0C f f C fL L sepπ α α= − ⋅ + ⋅ − ⇒
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Final algorithm:
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