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Wind Energy

Various wind turbines :
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Wind Energy

The Danish Concept:

3-bladed upwind
machine with gearbox
and asynchroneous
generator
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Wind Energy

The worlds largest wind turbine
Enercon 126: P=6MW; D=126m
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Wind Energy

Development in wind turbine technology

1985 980 1995 2000
50 kW 100 kW 500 kW 600 kW 2000 kW 5000 kW
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Wind turbine

Nacelle :

I| Mechanical Brake {
| | Main Gear | ‘ Generator ./

shaft
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Wind Energy

How does a wind turbine work?

* Thewind hitstherotor plane

e The combinition of wind speed and
bladerotation resultsin a pressure

distribution on therotor blades '
« Thepressuredistribution causes a

turning moment (torque)

e Theturning momentrotates the shaft

« Theshaftis coupledtoa generator
that produces electrical power
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Wind Energy

Aerodynamic forces:
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Wind Energy

Aerodynamic forces and geometry
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Wind Energy

Pressure and forces on aerofoll:
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Wind Energy

Blade-Element MomentumTheory:
(1-a)Vy .

* The rotor is divided into independent
stream tubes

« Aerodynamic forces determined from
\

aerofoil data ° o Rotorakse
\D
* Induced velocity determined from e[\
generel momentum theory 2
cBC
 Correction for finite number of blades lﬁ_a = —-—-"-"E—
using Prandtl tip-correction Brrsin~e
cBC
« Various ad-hoc corrections for *3_'{ = 3 .3'1;.. <
off-design operating conditions L+a Tr=linfcos U
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The Optimum Rotor

« Whatis the optimum number of blades ?
« What is the optimum operating condition (TSR)?

« What is the maximum efficiency?
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Wind Turbine Rotor Aerodynamics

What is the optimum number of blades?

many blades ?
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Why 3 blades?

Aerodynamics: Close to optimum

Structural-dynamics: No gyroscopic forces in yaw

Estetics: Harmonic rotation

Historics: Tradition of the Danish Concept’
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Optimum rotor with infinite number of blades
1-D Axial momentum theory:

Axial interference factor: a=1—v/Vo

Thrust Coefficient:  C; = ! 5
1/sz0VO
Power coefficient: CP = : 3
1/szOVO
T=mAV = T=2pAzv(V,-V)
P=vT = P=2pAN2(V,-V)
Betz limit:
QI' =4a(l-a) . 6
C, =da(l-2)2 3 Cpmax =277 9°%
DTU
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Optimum rotor with infinite number of blades
Generel momentum theory:

= 6o
Qqr
Euler’s turbine equation:
1
2 3
C, =84 L a'(l1—-a)x’dx
TSR C bmax
0.5 0.288
1.0 0.416
1.5 0.480 N _ _
20 0512 Condition for optimum operation:
2.5 0.532 ,
5.0 0.570 a'=(1-3a)/(4a-1)
7.5 0.582
10.0 0593 DTU
e o
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Two definitions of the ideal rotor

(1912)

blade span

Ro

Joukowsky

Betz
(1919)

V. —w = const

VoW

blade span

R

In both cases only conceptual ideas were outlined for rotors with finite number of blades,
whereas later theoretical works mainly were devoted to rotors with infinite blades!
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Betz' condition for maximum efficiency
of a rotor with a finite number of blades

Maximum efficiency is obtained when the pitch of the trailing
vortices is constant and each trailing vortex sheet translates

backward as an undeformed regular helicoidal surface
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Induced velocities:
Movement of vortex sheet with

constant pitch and constant

Axial induced velocity: velocity \
u =wcos’ @

—_—

a
Tangential induced velocity: Pitch:
U, =Wcos@sin@ h=2zartan®/B=27(V —w)/BQ
tanCD:E: —W)/Qr
rdé
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Optimum lift distribution:

Goldstein function: G(r) =T'(r)/hw = B['Q/ 22wV —%w)

Kutta-Joukowski theorem: ['=%cC Uo

L

Combining these equations, we get

7 cC, =—

L

_ 2W(1-%2W)G(r/R)

AU, IV)

Solidity: o= 2
2R

0

Tip Speed ratio: 4 = ?/R
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The optimum rotor:
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Comparison of maximum power coefficients

Solution of Joukowsky rotor Solution of Betz rotor
(Okulov & Sgrensen, 2010) (Okulov&Sgrensen, 2008)

o — N,=10 .
O W=QRV e A=QRV
0 5 10 15 0 5
J1J2+J3—\/J12322—J1J2J3+J32 Difference between (I +1, \/I2 L1+ )
a= 3] power coefficients W= 3l
;o Camaxc)] % 3
3, =142 | X s xf’: Mass
4t R? . __x-3| coefficient | —ZIG de
le 1¢&° =0
L=l T e Re — W cAxialloss ) XX
5 N\ factor” 3~ I (X) 2 12
J ZIIUZXxdx \ 0 e
3= A=QRV DTU
a k
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Optimum 3-bladed rotor with losses:

0.6
0.55 SRS SHS S anh
05 —= 1 1
a
&
0.45
Inviscid flow ——
clled=150 ——
04 cl/ed=100
IEetinmitl—
4 5 8 10 12 14 16

X (Tip Speed Ratio) []
From C. Bak: J. Physics: Conference Series, vol. 75, 2007
DTU
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Wind Energy

Wind turbine performance :

0.6

$Cp  Betz 599 limits
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Control and regulation of wind turbines

Stall control

Active Stall control ...

Power

Pitch control

Variable speed
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Stall-regulated wind turbine:
Computed power curve
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Wind Turbine

Modern Wind Turbine :

* Pitch-regulated

 P=2 MW; D=90 m

e Nom. Tip speed.: 70 m/s

* Rotor: 38t, Nacelle: 68t; Tower: 150t
e Control: OptiSpeed; OptiTip

V90-1,8 MW og 2,0 MW effektkurve
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Wind Turbine Aerodynamics

Need for models capable of coping with:

. Dynamic simulations of large deformed rotors
. Complex geometries: Rotor tower interaction
. Adjustable trailing edge flaps

. Various aerodynamic accessories, such as vortex generators,
blowing, Gourney flaps and roughness tape

. 3-dimensional stall including laminar-turbulent transition
. Unsteady, three-dimensional and turbulent inflow
. Interaction between rotors and terrain

. Complex terrain and wind power meteorology

. Offshore wind energy: Combined wind and wave loadings DTU
o
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Blade Element Momentum Model
Basic ingredients of the BEM model:

. Based on 1-D momentum theory assuming annular independency
. Loading computed using tabulated static airfoil data

. Dynamic stall handled through 'dynamic stall’ models

. 3-dimensional stall introduced through modifications

. Tip Flows based on (Prandtl) tip correction

. Yaw treated through simple modifications

. Heavily loaded rotors treated through Glauert’s approximation

. Wakes and park effects modelled using axisymmetric momentum

theory DTU

>
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Blade Element Momentum Model

Advantages of using the BEM model:

Extremely fast on a PC

. Can in principle cope with all flow situations

. Easy to couple with an aeroelastic conde, such as Flex
. Easy to couple with turbulent inflow model

. Many years of experience in using the model

. Performs very well at design conditions

. Capable of delivering results at off-design conditions

The BEM modelis today the industrial standard used by all
producersofwindturbinesand wind turbine blades DTl
o
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Blade Element Momentum Model

A,
W, Us
dT 1
. L, = BF, ——pcBVg-Cn}
d}
: Vre _
of /o dM
| ¢. J S = BrF, =lpcBrT/;ﬂ C.
: :I r__""'-‘-'--.—.:_-_.____ ]j__ --""---h_ﬁ d}” 2
- '-—+-- 1 ! E—— H\I
-0 Vo —Qr —
Blade element C =C,cosg+C,sing

C, =C;sing —C, cos¢

Airfoildata: L =1 pVvZcC,

_ 1 2
D= 2 ereICCD EIE
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Blade Element Momentum Model

; A, Induced velocity:
A W = (~aU,.a' Qr)
. L
Vel Velocity triangle:
o /e UL (- 1+d
X ¢|' 4 ~_ | 3111@“;: 'I’( g) ; CDSQ{': L2r( +-:'.?)
: | rﬁ‘;—_‘-'ﬂ e — D - -__-""'-ﬁ\ V?‘E‘f V?‘E‘f
- '-c-—i-- ! — _-_.:___f_'__‘_' — ‘t|
=B Vo —Qr T 2 _ U>(1-a)’ U, (1-a)Qr(l+a")
sin” ¢ sin ¢ cos @
dl’ pBcU;(1-a)’ C
dr 2sin’ ¢ "
dM  pBcU,(1-a)Qr’(1+a") .
dr 2singcos ¢ !
DTU
P
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Blade Element Momentum Model

.. U —u ,
Induced velocities: a = OU . u, =2Qra

(o]

Axial momentum balance:

dT

E =pU,—u,, )2rru, = 4.?&?@".}2{?(1 —a)

Moment of momentum balance:
dM

dr

= pruy2nru, = 4zpr’QU,a' (1-a)

Combining blade elementand

a= .
_ 4sin’ ¢ /(oC,)+1
and momentum EXPressions.

' 1
a = . : .
Solidity: o = Be/27r 4singcos¢g/(oC,)—1
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Blade Element Momentum model

How good Is the assumption of annular independency?
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Blade Element Momentum Model
The Tip correction

The tip correction, F, corrects the axisymmetricapproach to
accountfor a finite number of blades:

dT

— =A4mpU’aF(1—¢ : :
dr mpUzak(l=a) Prandtl tip correction formula:
2 B(R-r
dM o F =—cos™'| exp(————+= ))
—=4xp"QU a' F(1-a) r 2rsin ¢
dr
Modified expressions: a= — 1,
AFsm” ¢ /(oC )+1
a = !
AFsmgcosg/(oC,)—1
f DTU
e
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Blade Element Momentum Model
Other corrections

Heavily loaded rotors: ¢, = ‘if =4aF(1—a) fora<1/3
YapU . 27rdr
C, =4::IF[1—%(5—3{J)} fora>1/3
i r V4
Yaw correction: w =w,| L+ = tan(E) cos(8,,,,. —6,)
i du. ] AT
Dynamic wake: Rf(r/ R)i +4u (U, —u,) =
dt 2mrAr

DTU
o
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Blade Element Momentum Model

2D Airfoll data
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Blade Element Momentum Model
2D Airfoll data
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Blade Element Momentum Model
Suggested 3D corrections for airfoil data

Correction for rotational effects (AoA < 20 degrees):
Csp=Ciapt a(c/r)” I:Cf,fmr B CI._ZD:.

Correction for finite rotor size (AoA > 45 degrees):
C =C, cos¢+C,sing=C,(cx =90")
C.=C,sing—C,cos¢gp>0

Linear interpolation for 20 degrees < AoA < 45 degrees
DTU
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Blade Element Momentum Model
Computed 3D airfoil data
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Blade Element Momentum Model

2 T T T T

Dynamic stall

1.5 .

U
Pt )
g -?~. Y ,ﬁ % =:;

DTU
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Blade Element Momentum Model
Dynamic stall

Dynamic stall Is caused by:

Wind shear

Atmospheric turbulence

Tower shadow

Rotors operating in yaw or tilt
Dynamically deflected blades
Turbine placed on floating structure
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Blade Element Momentum Model
Dynamic stall model (dye)

c Attached flow
L

Cr,

~

~ Actual flow
ac, | | >

'CL ) e
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Blade Element Momentum Model
Dynamic stall model (dye)

f =0: Fully separated
f =1: Fully attached

Linear interpolation: A
CL(f):27z(a—a0)- f +CL Sep-(l— f)=
Tstatic :(CL,static L sep)/(27r (a—ap)- CL,sep)
Dynarpic apprfoach: Final algorithm:
df static B At
a7 1= Tstatic (T4~ Tstatic) exp{ J
DTU
o
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