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1 Flow separation. Drag. Scale effects

A fixed vertical circular cylinder is exposed to oscillatory horizontal flow with velocity U =
Um sin(2π/T ) where t is time, T period and Um velocity at maximum. This mimics the
situation where a vertical slender cylinder is exposed to long incoming waves, with the
difference that there is no decay in the velocity profile along the vertical.

The cylinder with diameter D and height h is exposed to a force along the oscillation di-
rection, Fx1

, and force acting in the crosswise direction, Fx2
. Assuming that the forces per

unit height are given by a Morison-type equation we evaluate coefficients of mass (Cm), drag
(Cd) and lift (Cl) from

Fx1
= 1

4
πρD2CmU̇ + 1

2
ρDCd|U |U (1)

Fx2
= 1

2
ρDClU

2 (2)

(Note that the cylinder diameterD rather than the cylinder radius R is used in the notation.)
The force coefficients depend on two parameters, the Keulegan-Carpenter number (KC) and
Reynolds number (Re). The latter is better replaced by the so-called β-number which equals
Re/KC.

Figure 1: Circular cylinder performs a translatoric harmonic oscillation perpendicular to its
axis. Velocity U = Um sin(2π/T ) (t time, T period and Um velocity at maximum). D the
cylinder diameter.

The KC-number is defined by

KC =
UmT

D
=

2πa

D
, (3)

where a is the excursion amplitude of the oscillation. KC is independent of scale, for similar
a/D.

The β-number is defined by

β =
D2

νT
. (4)
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The β-number (and Reynolds number) is scale dependent. Assuming that the oscillation
results from a wave motion, the wave period T is related to the wavelength λ by the dispersion
relation for gravity waves. This is discussed earlier in the course and reads ω2 = gk tanh kh
where ω = 2π/T is frequency, k = 2π/λ wavenumber and h water depth. When tanh kh = 1
(deep water) the dispersion relation gives

T =
√

2πλ/g

which means that the β-number becomes

β =
D2

νT
=

D
3

2

ν

√

g

2πλ/D
(5)

This scaling is kept in finite water depth, although expressions become modified (see exer-
cise).

Since the wavelength divided by the cylinder diameter (λ/D) and water depth divided by
wavelength (h/λ) will be the same in full scale and in laboratory tests, the value of the β-
number behaves according to the cylinder diameter in power 3

2
, assuming that the kinematic

viscosity ν is the same in full scale and laboratory scale.

1.1 Example. β-number for Hywind. Full scale and lab.-scale.

The diameter of the Hywind spar platform is 6 m at the water line and 8.3 m of the submerged
body. A typical period of the incoming waves is T = 10 s corresponding to a wavelength of
160 m (deep water). With D = 6 m and ν = 10−6m2s−1 the β-number becomes

β =
D2

νT
= 3.6× 106.

Models of Hywind have been tested in laboratory at reduced scale. With a laboratory scale
of 1:15 we obtain β = 61400. With a laboratory scale of 1:47 we obtain β = 11240. For
comparison, Hywind was tested in scale 1:50.

1.2 Example. KC for offshore wind turbine

A wave field of significant wave height of 10 m and period 10 s, interacting with a vertical
cylinder of diameter 6 m, implies a KC-number of about 5 and indicates an upper KC
value for design. The corresponding wave slope is around 0.2. In very rare events, like the
Draupner wave, the slope may double (0.4) meaning that KC is up to 10. However, very
large waves appear in single events rather than in long trains.

1.3 Exercise

Derive an expression corresponding to (5) assuming finite water depth. Hint: Use the
dispersion relation for finite water depth.

1.4 Exercise

Perform the calculations of the β-number in section 1.1. If in model scale tests of Hywind
β = 1000, what is the scale ratio? Assume same kinematic viscosity in model and full scale.
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1.5 Cm, Cd and Cl. Experimental and numerical evaluation

Mass, drag and lateral force (lift) coefficients depend on KC and β. There are two important
regimes, the one where flow separation occurs, and the other where flow separation does not
occur. In the former regime, the flow coefficients are basically determined by the pressure
field. The viscosity of the fluid plays an important role in the flow separation process. There
is little or no direct effect of the viscosity in the cylinder’s boundary layer on the forces,
particularly in large scale.

In the regime where flow separation does not occur there is practically speaking no effect of
viscosity, in large scale. In laboratory scale, the effect of viscosity is measurable, contributing
to the mass and drag coefficients, and is given by the classical Stokes-Wang solution (Stokes,
1851; Wang, 1968). The solution valid for KC ≪ 1, and β ≫ 1, can be reduced to the
following form

Cd =
3π3

2KC
[(πβ)−

1

2 + (πβ)−1 − 1

4
(πβ)−

3

2 )], (6)

Cm = 2 + 4(πβ)−
1

2 + (πβ)−
3

2 . (7)

We note that when the cylinder is oscillating in fluid otherwise at rest, Ĉm = 1+4(πβ)−
1

2 +

(πβ)−
3

2 .
There are other features in the non-separating regime, such as formation of the Honji insta-
bility and the Honji rolls.

1.6 Regime with flow separation

An important result of experiments by Otter (1990) is that flow separation does not occur
when KC is less than about 2. His experiments were performed with β = 61400. Recent
LES-computations of a circular cylinder performing a translational harmonic oscillation per-
pendicular to its axis, with β = 11240, by Rashid, Vartdal and Grue (2011), obtained also
that there was no flow separation when KC < 2 (figure 2).

Evaluation of the drag coefficient in theKC-regime between 2 and 4, experimentally by Otter
(1990) (β = 61400) and computationally by Rashid, Vardal and Grue (2011) (β = 11240),
shows a conforming picture, even though there is some span in the β-number. Cd is 0.44
for KC = 4 (figure 3). The force coefficients for KC = 4 and β = 11240 are: Cm = 1.95,
Cd = 0.44 and Cl = 0.011 and illustrate that the mass term totally dominates (figure 3).
The lateral force (lift) is only 2.5 per cent of the drag force. This comparison indicates that
flow separation is not a dominant contribution to the force picture of offshore wind turbines.

Drag coefficients Cd by Otter and Rashid et al. are close to those in U-tube measurements
by Sarpkaya (1986) (β = 11240) but significantly overpredicts Cd for the smaller KC.

The various force contributions become all significant when the scale is reduced with the
β-number around 1000. According to computations, flow separation does not occur when
KC < 2. Force coefficients evaluated for β = 1035 and KC = 8.5 are all comparable:
Cm = 1.52, Cd = 1.59 and Cl = 1.75.
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Figure 2: a) Drag coefficient divided by the Stokes-Wang solution in eq. (6) denoted by W
vs. KC. LES computations with β = 1035 (red squares); β = 11240 (red triangles); β = 300
and 197 (red dots); β = 61400 (large red circle); Otter’s experiments (1990) β = 61400 (blue
crosses). From Rashid, Vardal and Grue (2011). b) Cd vs. KC. Experiments by Otter
(1990) for β = 61400 (×), computations by Rashid, Vartdal and Grue (2011) for β = 11240
(squares), experiments by Sarpkaya (1986) for β = 11240 (⋆).
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Figure 3: In-line force Fx1
(blue) and lateral force Fx2

(red) vs. time for β = 11240 and
KC = 4. LES-computations by Rashid, Vartdal and Grue (2011).
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