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1 Wave force in strongly nonlinear periodic waves

1.1 Force at the fundamental wave period

A fixed vertical circular cylinder of deep draft exposed to periodic waves experiences a
horizontal wave force. The dominant part of this force oscillates according to the period T
of the wave - the fundamental period. We examine the properties of the oscillatory force at
the fundamental period, for a range of steepness of the incoming waves.

The surface elevation η of Stokes waves in deep water is, to leading order in the wave
amplitude, given by

η = A cos(−kx+ ωt),

where ω = 2π/T denotes the frequency and k the wavenumber. The x-axis is chosen along
the wave direction and t denotes time. The nonlinear extension of the surface elevation can
be obtained explicitly by η = A cosχ+ 1

2
A2k cos 2χ+ 3

8
A3k2 cos 3χ+ ... with χ = −kx+ ωt.

The frequency ω is related to the wavenumber k by the nonlinear dispersion relation which
reads, in deep water

ω2 = gk(1 + (Ak)2) (1)

The corresponding velocity potential is given by

φ = −
gA

ω
eky sin(−kx+ ωt) (2)

and is correct including cubic nonlinear terms. The vertical axis y points upwards and y = 0
determines the water surface at rest. The wave induced velocity is deduced from the velocity
potential. The horizontal component u = ∂φ/∂x along the wave direction becomes

u(x, y, t) =
gAk

ω
eky cos(−kx+ ωt) (3)

With such a wave input, Huseby and Grue (2000) measured the horizontal wave force on a
vertical cylinder, in wave tank. The wave slope Ak was varied from zero to 0.24, where the
latter implies a rather strongly nonlinear periodic wave train.

1.2 Calculation of the linear wave force

Consider the linear wave force acting on a slender vertical circular cylinder. That the wave
is linear means that Ak << 1. That the cylinder is slender means that the radius is small
compared to the wave length, such that the product between the wavenumber k and radius
R is small (kR << 1).
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The force may in this limit be evaluated by using the Morison equation section wise along
the vertical, i.e.

dF

dy
= πρR2CmU̇ . (4)

Here U̇ denotes the horizontal acceleration of the wave at the central position of the cylinder
(x = 0) and Cm = 2 is the mass coefficient in the inviscid limit. By vertical integration
assuming a cylinder of deep draft, the force becomes

F (t) = 2πρgAR2 sinωt. (5)

1.3 McCamy-Fuchs solution

Alternatively, the linear exciting force on the vertical cylinder may be obtained by the
McCamy-Fuchs (1954) wave diffraction solution which has no restriction on the wavenumber.
The wave potential is obtained by

φ(x1, x2, y, t) = Re
[ ig

ω
η(x1, x2, y)

cosh k(y + h)

cosh kh
eiωt

]

(6)

where η is the free surface displacement and satisfies the two-dimensional Helmholtz equa-

tion. The elevation of the incoming wave is given by ηinc = Ae−ikx1 . By using that

e−ikx1 =
∞
∑

m=1

ǫm(i)
−mJm(kr) cosmθ (7)

where (x1, x2) = r(cos θ, sin θ), Jm denotes Bessel function of first kind of order m, ǫ0 = 1
and ǫm = 2 (m > 0). Taking into account the kinematic boundary condition at the fixed
vertical cylinder, at r = R, the elevation η of the combined incoming and diffracted wave
field reads

η(x1, x2) = A

∞
∑

m=1

ǫm(i)
−m(Jm(kr)−H(2)

m (kr)
J ′

m(kR)

H
(2)′
m (kR)

)

cosmθ, (8)

where H
(2)
m denotes Hankel function of order m of the second kind, and a prime means

derivative. Integrating the pressure along the θ-direction and along the vertical, we obtain
the following expression for the linear wave force

F1 =
4ρgA tanh kh

k2H
(2)′

1 (kR)
(9)

where the time dependent force is obtained by F (t) = Re[F1e
iωt]. In (9) H

(2)
1 denotes the

Hankel function of second kind and order one, and a prime differentiation.

1.4 Force at the fundamental frequency in the nonlinear regime

Expressions (5) and (9) show that the linear force scales accoring to ρgAR2. Few calcula-
tions of the force oscillating at the fundamental frequency exist, when the waves are in the
nonlinear regime. The difficulty with such calculations is that the waves exibit local breaking
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at the waterline of the cylinder, when the waves are sufficiently strong. This local breaking
is difficult to circumvent. Ferrant (1998) was able to perform calculations of the nonlinear
force for waveslope Ak up to 0.145. Huseby and Grue (2000) performed laboratory measure-
ments of the wave force for Ak up to 0.24, well into the regime where local breaking occurs
at the cylinder. The waves were in the long wave regime with kR in the range 0.166-0.378.
The measurements show that the nondimensional force is (about) constant through the wave
slope range (figures 1-2). It is rather close to the values that can be obtained from the linear
forces (5) and (9), for the whole range. Both force amplitude and phase are (about) constant
for the range. For example, for kR = 0.166 we have that |F1|/ρgAR

2 is

2π Morison’s eq. (linear)

6.4 McCamy-Fuchs (linear)

6.45± 0.05 experiments, R = 4 cm (nonlinear)

6.65± 0.05 experiments, R = 3 cm (nonlinear)

1.5 Example

Offshore wind turbines may be exposed to trains of rather strong amplitude. A typical
amplitude is 5 m. A typical period is 10 s. This implies a wavelength of λ = 160 m (deep
water) corresponding to a wavenumber of k = 2π/λ ≃ 0.04 m−1. With a cylinder diameter
of 6 m, the cylinder radius R times the wavenumber is then kR = 0.12. The waveslope Ak
becomes 0.2.

1.6 Exercise

Derive the expression for the force F in (5) using (4) for the sectionwise force with the
acceleration derived from the orbital velocity in (3).
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Figure 1: First harmonic force. Measurements by Huseby and Grue (2000) (squares and
diamonds), Morison’s equation (solid line), McCamy-Fuchs solution (dashed line), nonlinear
computations by Ferrant (1998) for kR = 0.245 (dashed line with crosses). From Huseby
and Grue (2000).
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Figure 2: Phase of first harmonic force, Arg(F1) vs. Ak. Measurements by Huseby and Grue
(2000) (squares and diamonds), Morison’s equation (solid line), McCamy-Fuchs solution
(dashed line), nonlinear computations by Ferrant (1998) for kR = 0.245 (dashed line with
crosses). From Huseby and Grue (2000).
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