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1 Wave environment

Analysis of ocean surface waves, and more so, applied analysis of ocean surface waves,
commonly starts out by a linear analysis of the waves. When we study the behaviour
of fixed intallations or floating objects at sea, the first analysis one performs, is a linear
analysis. This has the power of revealing the leading order behaviour of the structures and
systems in consideration.

The surface elevation η(t; x1, x2) at a horizontal position x = (x1, x2) of the ocean may
be recorded in several ways providing a time series of the data that can be analyzed. Al-
ternatively, snapshots of patches of the surface elevation provide η(x1, x2; t). In a linear
reconstruction of the wave elevation we assume that it is composed by a sum of linear waves
of complex amplitude an, frequency ωn and wavenumber vector kn = (k1, k2)n giving

η(x1, x2, t) = Re
N
∑

n=1

Ane
i(−kn·x+ωnt), (1)

where N denotes the number of components.

Processes like the one represented in (1) may be interpreted and analyzed in a statistical
sense and are described in many text books.

An alternative to the sum in (1) is an integral representation by

η(x1, x2, t) = Re

∫ ∫

dA(ω, θ)ei(−k(ω)·x+ωt), (2)

The complex wave amplitudes in (1) are represented by the wave spectra that can be ex-
tracted from the statistical wave analysis. The complex amplitudes An have a real amplitude
|An| and phase −δn = arg(An) where the minus sign is chosen for convenience. The ampli-
tudes |An| are obtained from the wave spectrum by

1
2
|An|2 = S(ωn)∆ωn. (3)

Moments of the wave spectrum are given by

mk =

∫ ∞

0

ωkS(ω)dω (4)

The peak period of the spectrum is indicated by T0. The mean wave period of the spectrum
is defined by

T2 = 2π(m0/m2)
1
2 .

1



Another wave period commonly used is defined by

T1 = 2πm0/m1.

A significant wave height, defined as the mean of the one highest waves, is defined by

Hs = 4m
1
2
0

An example of engineering spectrum is the JONSWAP (Joint North Sea Wave Project)
spectrum. This is given by

S(ω) = 155
H2

s

T 4
1ω

5
e−944/(T 4

1
ω4)(3.3)Y (m2s) (5)

where

Y = e−[(0.191ωT1−1)/(
√
2σ)]2

and

σ = 0.07 for ω ≤ 5.24/T1

= 0.09 for ω > 5.24/T1

Another spectrum is the modified Pierson-Moskowitz spectrum which is given by

S(ω) = H2
sT1

0.11

2π

(ωT1

2π

)−5

e−0.44(ωT1/2π)−4

(6)

Spectrum of directional waves are obtained by

S(ω, θ) = S(ω)D(θ). (7)

An example of D(θ) is

D(θ) =
2

π
cos2 θ, −1

2
π < θ < 1

2
π (8)

= 0 otherwise

1.1 Field equation

Ocean surface waves induce a velocity field that below the surface is governed by the Laplace
equation. The velocity field is obtained by the gradient of a potential denoted by φ. In
Fourier space the Laplace equation becomes

φ̂yy − |k|2φ̂ = 0 (9)

where φ̂ denotes the Fourier transform of φ, giving solutions of the form

φ̂ = C0e
±|k|y (10)

where C0 is a complex constant. In deep water this gives φ̂ = C0e
|k|y. In water of finite

water depth with a bottom at y = −h this gives φ̂ = C0 cosh |k|(y+h). By Fourier inversion
we obtain

φ =

∫ ∫

C0
cosh |k|(y + h)

cosh |k|h eik·xdk (11)
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1.2 Boundary conditions

We consider the linearized boundary conditions. The free surface position is determined by
y = η or, alternatively, y − η = 0. The kinematic boundary condition expresses that the
fluid velocity normal to the surface equals the normal velocity of the surface boundary which
means that D(y − η)/Dt = 0, where D/Dt = ∂/∂t+ v · ∇, giving, for linear waves

ηt = φy at y = 0. (12)

The pressure p of the fluid is given by the Bernoulli equation, i.e. p = −ρ(φt +
1
2
|∇φ|+ gy).

The dynamic boundary condition expresses that Dp/Dt = 0, giving, for linear waves

φt + gη = 0 at y = 0. (13)

Combination of (12) and (13) gives φtt + gφy = 0 at y = 0. Assuming periodic motion of

frequency ω the potential reads φ = ReD0e
iωt, giving

−ω2φ+ gφy = 0 (14)

at y = 0. Combination of (11) and (14) gives the dispersion relation for ocean surface gravity
waves

ω2 = gk tanh kh. (15)

where k = |k|.

The wave’s propagation speed, commonly termed the wave speed, is defined by c = ω/k.

1.3 Example

In infinite water depth the dispersion relation becomes ω2 = gk. The wave speed becomes
c = g/ω =

√

g/k.

1.4 Example

In shallow water tanh kh ≃ kh. The dispersion relation becomes ω2 = gk2h. The wave speed
becomes c ≃

√
gh.

1.5 Example

In moderately shallow water tanh kh ≃ kh− 1
3
k3h3. With this approximation the wave speed

becomes c ≃
√
gh(1− 1

6
k2h2).

1.6 Example

The period T = 2π/ω of ocean surface waves are connected to the wavelength λ = 2π/k
through the dispersion relation (15). In water of infinite depth we obtain λ = gT 2/2π, which
can be used to evaluate that waves of period 10 sec. have a wavelength of (about) 160 m,
waves of period 5 sec. have λ ≃ 40 m and waves of period 15 sec have λ ≃ 350 m.
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1.7 Nonlinear Stokes waves in deep water

In the case when the water depth is large, a periodic train of Stokes waves has a wave
potential

φ = −gA

ω
eky sin(−kx+ ωt) +O(A4k4), (16)

and the nonlinear dispersion relation reads

ω2 = gk(1 + A2k2) +O(A4k4). (17)

The leading terms of the surface elevation reads

η = A cosχ+ 1
2
A2k cos 2χ+ 3

8
A3k2 cos 3χ+ ..., χ = −kx+ ωt (18)

For ocean waves in deep water the approximations above are excellent. This is e.g. why
variants of the nonlinear Schrödinger equation are useful for prediction of evolution of ocean
waves within the time window of the evolution of the Benjamin-Feir instability.

Wave induced velocities are given by

(u, v) = (φx, φy) =
gAk

ω
eky(cosχ,− sinχ), χ = −kx+ ωt (19)

1.8 Example

Waves of period 10 sec has a wavenumber of (about) 0.4 m−1. If the height is 10 m, the
wave slope is Ak = 0.2 which is a very strong wave train on the ocean.

According to (17) the wave length is increased by 4 per cent. The same increase is true for
the wave speed.

1.9 Example

The Draupner wave, which is a single large event, the strongest that has been documented
at sea, has an estimated wave slope of 0.39.

1.10 Linear shallow water waves

The linear shallow water equations read

ηtt − c20ηxx = 0 (20)

where c0 =
√
gh.

1.11 Weakly nonlinear shallow water waves

Shallow water waves in one-directional propagation in a fluid layer of depth h is modelled
by the Korteweg-de Vries equation, which reads

ηt +
√

gh ηx +
3
2

√

g
h
ηηx +

1
6
h2
√
gh ηxxx = 0 (21)
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1.12 Soliton solution

The KdV equation (21) has solitary wave solutions of the form

η(x, t) = H sech2 k(x− ct) (22)

where

k =
1

h

√

3H

4h
(23)

c =
√

gh
(

1 + 1
2
H
h

)

(24)

1.13 Cnoidal waves

Periodic nonlinear waves in shallow water may be approximated by the theory for cnoidal
waves. For the elevation, the first term in a series expansion is obtained by Fenton (1990)
by

η

htrough−depth

= 1 + ǫ cn2(u|m) + ... (25)

where u = α(x− ct/htrough−depth), α =
√

3ǫ/4m+ ..., ǫ = H/htrough−depth, H wave height.

cn(u|m) denotes one of the Jacobian elliptical functions defined by

cn(u|m) = cosφ, u =

∫ φ

0

dθ

(1−m sin2 θ)1
2

(26)

where m ≤ 1. For m = 0 cn(u|0) = cos u. For m = 1 cn(u|1) = sechu.

Fenton (1990) has studied the ranges of application of Stokes theory and cnoidal theory, for
waves in shallow water.

1.14 Ursell number

The Ursell number evaluates the ratio between the nonlinearity and dispersion parameters
and is given by

Ur =
H

h

(λ

h

)2

(27)

where H denotes the wave height, h water depth and λ wave length.

1.15 Example

Long waves in water of depth 25-45 m have period 12 s and wave height 10 m. The wave
frequency becomes ω = 0.357 s−1 and ω2h/g = 0.325 with h = 25 m, which gives kh = 0.603.
The relative wave length becomes λ/h ≃ 10. The Ursell number becomes 40 which tells that
Stokes wave theory (5th order) is still applicable. (Illustration).
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Figure 1: Application ranges. Stokes (5th-order) and cnoidal wave theories. From Fenton,
1990.
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