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Wake and Wind Farm Aerodynamics
Basic questions and issues:

* How importantis the dynamics of the vortex system
 Relationship between strength of the vortices and the blade load
 Conditions for instability

« How far downstream do 'near-wake’ and 'far-wake’ refer to

« What is the relationship between vortex dynamics and meandering

e How doesthe added turbulence intensity relate to the loading

* | Performance predictions of wind farms
o | Life time estimation of turbines in wind farms
* | Influence of stability of the atmospheric boundary layer

e | Estimation of wind resources in wind farm to wind farm interaction
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Wake and Wind Farm Aerodynamics
Simulation models

e Momentumtheory (Frandsen)

Linearized Navier-Stokes (Fuga)

« Parabolised Navier-Stokes (Ainslie, UMPWAKE)
* Reynolds Averaged Navier-Stokes (RANS)

« Detached Eddy Simulation (DES)

« LargeEddy Simulation (LES)

« Actuator Disc/Line-LES (AD/L-LES)
DTU
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Wind Turbine Wake Aerodynamics

Horns Rev offshore wind farm:
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The actuator line technique

Basic idea: + Replace rotor blades by body forces
« Determine body forces from aerofoil data
« Simulate flow domain using DNS or LES

« Computing code: EllipSys3D

Body forces
Inflow Outflow
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Vortex structures in the wake of a row of rotors

Developmentofwake behind threerotorsin arow at W, =10 m/s; Turbine
spacing6rotor radii. A) Constantinflow; B) Turbulentinflow.
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Ficurge 1. Layout of Horns Rev Wind Farm
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FIGURE 13. Simulation results compared with measurements.
Results from both simulations and measurements are shown for
inflow angles between 255 and 285 degrees, 1.e., £ 15 degrees

from the westerly direction.
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Modelling of Turbulent and Atmospheric Turbulence

Vorticity shed from 5x5 turbines in a farm
computed by actuator disk method
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Simulation of turbulence inside wind farm

Basic idea: « Replace rotor blades by body forces
e Determine body forces from aerofoil data

« Simulate an 'infinite’ row of turbines using
cyclic boundary conditions

Body forces
Cyclic b.c. ’ Cyclic b.c.
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Simulation of turbulence inside wind farm

Cross sectional turbulent flow fields:

Iso-vorticity contours in the final stage DTU
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Simulation of turbulence inside wind farm

Reynolds stresses:
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Simulation of Wind Farms

ABL flow equations:

ou;
- I :0’
OX;j
ouj | (ou; U 1op* oty U
- —I_uj - _ - — - _ - —I_‘" 2
ot OXj  OXj P oXi  OX; OX
0—<0> _f
+0i38 0 +fc'5:1]3u_} +Fi,
0
o0 - o og 0 SGS fluxes
ot oxis T oxs 2 -
] J | Tjj = U; uj U; ?J
q; = u;0—1;0.
>
Department of Mechanical Engineering >

Technical University of Denmark >



Simulation of Wind Farms

Dynamic Sub-Grid Scale model:

o

SGSstress:  Tij—3Tkk0ij = —2VsgsSij

SGSheatflux: ¢ — 5 26
Prsgs OXj

Prsgs 1s the SGS Prandtl number

Resolvedstrainrate: S;

{5ﬁi/5Xj+5ﬁj/5Xi)/2

Smagorinsky mixing length model:
.u2 — o L )
vses = C2A"|S|, where S| = (2S5;S;)"/?

- ?

Problem: Cs and Pryg;
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Simulation of Wind Farms

Dynamic SGS model:
(Germano (1991); Lilly (1992))

Least squares minimization

of error:
~ (LM )
Ci(A) = 5=,
s(4) (MM >,
L~ K:X; >
2pr=1( 1) — (KiXi)
(D)= XX .

Scale dependence parameters:

p=C2(aA)/C2(A)
Bo = C2Pri(x1)/C2Prl(A)

Typically: =1 and Sy =1
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Test filter:

A =aA (with typically o =
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Simulation of Wind Farms
Dynamic scale-dependent SGS model:

(Meneveau et al.

Leastsquares minimization
of error:
y LM ) ¢
C(A)y= T
> <M1jM 1] >£

KX
ZI)r ]{A _ < | 17 £
v = xS,

Scale dependence parameters:
P C2zd)  C3(2A4)
C2(A)  Cad)’

C2Pr uﬂ) CZPr NCZ)
ﬁfﬂ_

C2Prigh(A)  C2Prgl(ad)
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(1996); Porte-Agel et al. (2011))

Where:
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Second test filter:
A =02
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Simulation of Wind Farms

Some results of ABL-LES computations:
(Porte-Agel et al. (2011))
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Simulation of Wind Farms

Comparison of LES computations with measurements
(Porte-Agel et al. (2011))
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Simulation of Wind Farms

Comparison of LES computations with measurements
(Porte-Agel et al. (2011))
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Simulation of Wind Farms

Comparison between actuator disc and actuator
line models (Porte-Agel et al. (2011)):
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Simulation of Wind Farms

Momentum model:

Somewhere
downwind:
Large wi

Wake merged

“Separate” single
row

From Frandsen et al.: Wind Energy vol. 9, 2006
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Simulation of Wind Farms

Momentum model:
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Figure 2. Examples of wind turbine patterns for different wind directions
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Simulation of Wind Farms

Multiple wakes, single row:
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Simulation of Wind Farms

Momentum model:

Arr ] AIE ?
coll—cCy)=—c,(1—cy ) +— caCr =
n %‘ oo { ‘j A”_] { } 2 A”—] T
1 C..
_U[I = :I--"]_ A”_ - An = _A i C
1 3 R —c. T

1 Cu i
ﬂ@ where EAR] - Cr 1saconstant =

5

0

L1
i - Pl
| / .
-
> n
L
f [
I
1 il
i il
I
I
|
I
I
I
I
|
I
I
1
-] |
- ]

The wake cross-sectional area is
expanding linearly with x

Frandsen model:

A — A, %D&[ﬁ +as, (n+ n]—%aﬁ{ﬁ 4 0s,n) = Agats,

1 CT Cy
where o=——
25 l-c, DTU
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Simulation of Wind Farms
Validation of model:
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Figure 6. Measurement of wind speed ratio c; at Norrekeer Enge Il. Wind speeds are derived from power signals.
Average is taken over six rows, each with seven units. s, = 7. The wind farm consists of 42,300 kW units
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Simulation of Wind Farms

Assignment:
Determine the maximum performance of two turbines in tandem:
&» __LJl V1 a u2
Turbine 1 Turbine 2

Assumethat U1l =%~(Vo + V1),and introduceal =1 - U1/Vo
anda2=1-U2/V1.

1. Deriveanexpressionforthe power coefficient Cp=Cp(al,a2)
2.  Whatis the optimum Cp and operating conditions for the rotor system
3. Canthe model be extended to an arbitrary number of wind turbines
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