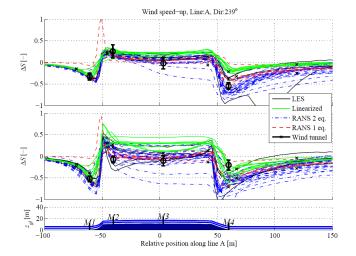

Atmospheric boundary layer and complex terrain

Jakob Mann

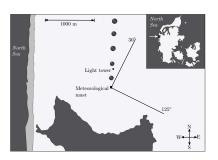
February 3, 2011 – DSF Flow center steering committee meeting, DTU, Lyngby


Documentation of the Bolund Experiment

The Bolund Experiment, Part I: Flow over a steep, three-dimensional hill, *BLM*, J. Berg, J. Mann, A. Bechmann, M. S. Courtney, H. E. Jørgensen

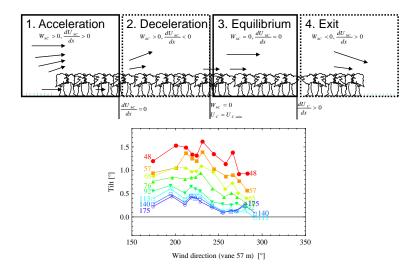
Documentation of the Bolund Experiment

The Bolund Experiment, Part II: Blind Comparison of Micro-Scale Flow Models, BLM, A. Bechmann · N. N. Sørensen · J. Berg · J. Mann · P-E Rethore


Benakanahalli Experiment Analysis

- 80 m masts in a South Indian hilly landscape
- Report available
- Weak winds

Spectra and length scales


On the length scale of the wind profile, QJRMS 2010, A. Peña, S. Gryning and J. Mann

- Neutral spectral tensor model fitted to Høvsøre data with varying stability
- Mixing lengths and spectral length scales compare well
- Models of the mixing lengths height dependence tested

Flow tilt angles

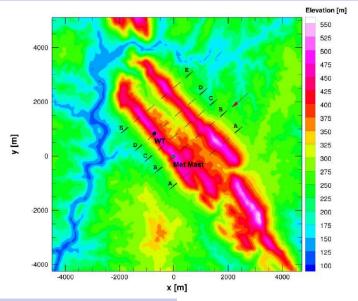
Flow tilt angles near forest edges – Part 1: Sonic anemometry, Part 2: Lidar anemometry, BioGeoSciences 2010 E. Dellwik, J. Mann, F. Bingöl and K. S. Larsen

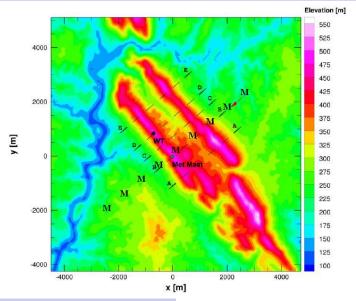
EERA workshop on wind conditions

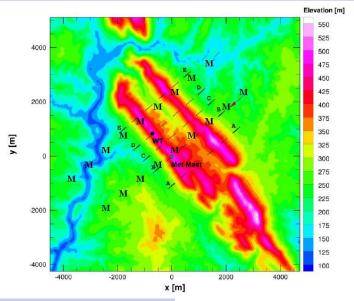
26-28 January 2011, Porto, Portugal

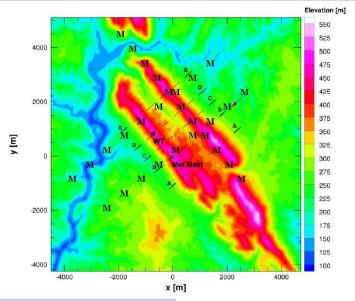
Main points of the workshop

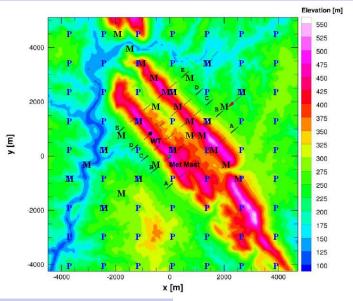
- A detailed design of a comprehensive set of field-experimental activities to provide a public set of reference data for use by industry and research organizations.
- Research into improvement and optimization of the "model chain" (from global to local scale).
- Based on the above points detailing of a robust methodology for establishment of an improved European Wind Resource Mapping ("European-Wind-Atlas-II") including time variations statistics and uncertainty measures.

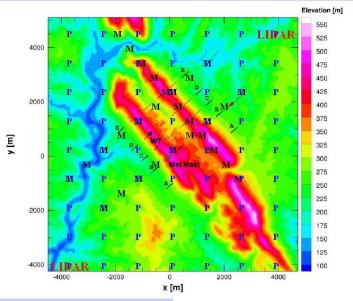



EERA experiment: Proposed Portuguese site




EERA experiment: Proposed Portuguese site





Work package 4

Siting in Forested and Complex Terrain

4	M18	Validation of complex terrain flow models using	6
		data from the Bolund experiment and the Vestas	
		India site.	
4	M19	Beta version of terrain flow solver available to	7
		industry partner Vestas.	
4	M20	Beta version of forest model available to industry	12
		partner Vestas.	
4	M21	Forest model Version-1.0 using parametrization	24
		from SCADIS.	
4	M22	Terrain flow model that includes atmospheric	40
		stratification.	
4	M23	Parametric study of the mutual turbine/terrain	44
		influence. (Using Actuator Disk/Line, both with	
		RANS and LES)	

Work package 5

Atmospheric Boundary Layers

5	M24	Implementation and validation of stability and	44
		boundary layer temperature inversion in Ellip-	
		Sys3D.	
5	M25	Development and verification of a model of the	48
		spatial structure of atmospheric turbulence under	
		influence of stratification.	
5	M26	Parametric study of stratified boundary layer	60
		from Horns Rev and Høvsøre.	
5	M27	Assessment of stratification impacts on rotor per-	70
		formance.	

Flow over and around forests

- Implementation and testing of SCADIS canopy code in EllipSys3D (Andrey Sogachev, NN + AED)
- Revise paper on the Falster forest edge experiment (Ebba Dellwik, Ferhat Bingöl)
- Analyze turbulence from the Falster experiment (Ebba + Jakob + Andrey)
- Analyze and model flow over Østerild in more detail (Ebba + Andreas Bechmann + PhD student starting 2011)

Stability and complex terrain

- Benakanahalli potentially useful for CFD comparison
- Bolund marginally useful
- PhD student (Tilman Koblitz, funded by WAUDIT) work on atmospheric stability in EllipSys3D

Spectral tensor models

Flat terrain

- Extent the RDT theory to include stability (Mark Kelly, Jakob Mann, PhD student Abhijit Chougule)
- Inclusion of the Coriolis force.
- Analysis of Høvsøre data in terms of cross-spectra, coherences etc

Fast, linearized flow models

- Finalize and document wind farm model (Søren Ott, J. Berg)
- Extent to forest canopies
- Exploration of non-linear models through iteration of the linearized models (S. Ott)