Objectives

Task 2: Wind Turbine Wakes and Clusters

Analyse and simulate turbulent wakes and turbine to turbine interaction subject to

- Wind shear
- Turbulent inflow
- Different wind directions
- Wind veer

Overall goals:

- Understanding of wake aerodynamics
- Development of turbulent wake model

- M7: Parabolized stand-alone N-S park model. Month 14.
- M8: Validation of N-S model for wake behind a single wind turbine. Month 24.
- M9: Refined far wake model. Month 24.
- M10: Parametric study of wake interaction. Month 36.
- M11: Parametric study of wake stability. Month 36.
- M12: Refined Dynamic Wake model. Month 48.

M7: Parabolized stand-alone N-S park model. Month 14.

Parabolised Navier-Stokes Solver (ParaSol)

Axial momentum equation

$$\frac{\partial(\rho w)}{\partial t} + \frac{\partial(\rho u w)}{\partial x} + \frac{\partial(\rho v w)}{\partial y} + \frac{\partial(\rho w w)}{\partial z} = -\frac{\partial \rho}{\partial z} + \frac{\partial}{\partial x} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right] \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right] \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right] \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right] \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right] \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial z} \right] \right]$$

Parabolised Navier-Stokes Solver (ParaSol)

Basic Equations

• Mass Conservation or Continuity Equation

$$\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} + \frac{\partial(\rho w)}{\partial z} = 0$$

• 2D Momentum Equations in a plane orthogonal to the wind direction

$$\frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho u u)}{\partial x} + \frac{\partial(\rho v u)}{\partial y} + \frac{\partial(\rho w u)}{\partial z} = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left[(\mu + \mu_t) 2 \frac{\partial u}{\partial x} \right] \\ + \frac{\partial}{\partial y} \left[(\mu + \mu_t) \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right] \\ \frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho u v)}{\partial x} + \frac{\partial(\rho v v)}{\partial y} + \frac{\partial(\rho w v)}{\partial z} = -\frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left[(\mu + \mu_t) \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right] \\ + \frac{\partial}{\partial y} \left[(\mu + \mu_t) 2 \frac{\partial v}{\partial y} \right] + \frac{\partial}{\partial z} \left[(\mu + \mu_t) \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \right]$$

UIU

Parabolised Navier-Stokes Solver (ParaSol)

Figures: a) Normalized axial and tangential force coefficients and b) Iso vorticity for the flow past a NordTank 500 kW wind turbine at 10 m/s. Wind direction

Department of Mechanical Engineering Technical University of Denmark

DTU

Conclusions on parabolized solver

- A parabolised Navier-Stokes code (ParaSol) has been developed.
- For each time step, the code is about 5 times faster than EllipSys3D with AL.
- No sub-iteration is needed
- The code needs only a few iterations to reach the correct loading and power before the wake is developed
- A numerical wake model based on the actuator line technique and body forces has been included
- The model enables to study single wake behaviour as well as the interaction of wakes from a multiplicity of wind turbines

M8: Validation of N-S model for wake behind a single wind turbine. **Month 24.**

Comparison of velocity and turbulence intensity for 300 kW Combi wind turbine at Nørrekær Enge

Department of Mechanical Engineering Technical University of Denmark DTU

Comparative study between fully resolved rotor and AL. Laminar inflow.

Comparative study between fully resolved rotor and AL. Turbulent inflow.

M9: Refined far wake model. Month 24.

Computations carried out for NM80 rotor subject to periodic boundary conditions; Corresponding to wind turbine ine the middle of a wind farm

Department of Mechanical Engineering Technical University of Denmark

DTU

Milestones Task 2

Velocity profiles behind 1, 2, 3 and 'infinitely' many turbines

Planes 2012: Task 2

M10: Parametric study of wake interaction. Month 36. Status:

o Initial computations carried out for turbines located along line

z

o Parametrical study will be undertaken

M11: Parametric study of wake stability. Month 36. Status:

- o Initial computations performed
- o Parametrical study will be undertaken

