Rotor and wind farm modelling with distributed momentum sources

DTU Wind Energy Department of Wind Energy

Wind farm modelling with distributed momentum sources

DTU Wind Energy Technical University of Denmark

Linné **FLOW** Centre **KTH Mechanics**

- Momentum sources in CFD for rotor and wind farm modeling
- Flow cases:
 - Blind comparison: Two turbines inline, Actuator line

2

- Wind farm: Lillgrund, 3D Actuator Disc
- Summary

Momentum sources in CFD for rotor and wind farm modelling

Governing Equations

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} [(\upsilon + \upsilon_i)(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i})] + f_{body,i}$$
$$\frac{\partial u_i}{\partial x_i} = 0$$

- Actuator Line/Surface/Disc (AL/AS/AD)
- Resolved turbulence (Underresolved LES)
- Wind Shear (Imposed)

EllipSys

DTU Wind Energy Department of Wind Energy

Blind comparison, experimental setup

BT1: Single turbine, D=894mm BT2: Two turbines, D_1 =944mm, D_2 =894mm

Wind tunnel, NTNU : 2.0m x 2.7m V=10m/s

Technical University of Denmark

CFD: EllipSys - FLEX5 Actuator line

Computational domain

- Multi-blocks Cartesian grid
- 750 blocks (each block 32³ grid points)
- 42.46 millions grid points
- Each AL blade is divided into 43 segments

Boundary conditions

- Constant inflow velocity
- Convective outflow
- Walls are included using slip boundary conditions
- Mann turbulence box is added at 1.5D upstream of the first wind turbine

Time step

- The movement of the blade tip during one time step should not exceed one grid spacing
- CFL<0.2

Turbine(s)

- Stiff turbine, constant rpm
- Effects of tower and nacelle are not considered in the present simulations

Computing resources

- Lindgren, CRAY XE6 system 1.516 nodes x 24 cores = 36.384
- 750 cores 12h simulation for one case

DTU Wind Energy

Department of Wind Energy

DTU

AL¹, Blade loads – BEM approach

DTU Wind Energy Department of Wind Energy ¹JN Sørensen, WZ Shen. Numerical modeling of wind turbine wakes. J. Fluid Eng., 124, 2002

6 **D**

S826 aerofoil, Re=10⁵

Airfoil (S826) at experimental Reynolds number is subjected to static stall hysteresis Increasing incidences → Higher lift and drag coefficients Decreasing incidences → Lower lift and drag coefficients.

DTU Wind Energy Department of Wind Energy

Technical University of Denmark

DTU

7

0.3

ABL - atmospheric turbulence

- Atmospheric boundary layer modelling consists of two parts:
 - Ambient turbulence by Mann¹ method
 - Imposed like actuator disc

Numerical

Department of Wind Energy

Technical University of Denmark

DTU

Ħ

Resolved turbulence in wind tunnel

DTU

Ż

Grid sensitivity

Similar number of blocks but different number of grid points

$$R_1 = R_2 = 0.447, \lambda_1 = \lambda_2 = 6$$

The solutions always exhibit a dependency on grid resolution but the relative error committed is rather small

(a) (b) (c) 1.2 1.2 1.2 0.8 0.8 0.8 U U U 0.6 0.6 0.6 -16 -16 -16 0.4 0.4 0.4 -24 -32 -32 -32 0.2 0.2 0.2 -10000 1000 -10000 1000 -10000 1000 7. z z (d) (e) (f) 1.2 1.2 1.2 0.8 0.8 0.8 U U U 0.6 0.6 0.6 -16 -16 -16 0.4 0.4 0.4 -24 $\cdot 24$ -32 -32 32 0.2 0.2 0.2 -10001000 -10001000 -10000 1000 0 0 y y y

Horizontal

Vertical

DTU Wind Energy Department of Wind Energy

Technical University of Denmark

DTU

11

Blind comparison: C_P,C_T

Turbine 1

DTU Wind Energy Department of Wind Energy

Blind comparison : C_P,C_T

Turbine 2

DTU Wind Energy Department of Wind Energy

Wake, 1D

DTU Wind Energy Department of Wind Energy

Wake, 4D

4D behind T2, Horizontal

DTU Wind Energy Department of Wind Energy

Conclusion

- LES Actuator line modeling of two turbines in a row performed
 - Good prediction for the T1, too high for T2, improvements are needed
 - Near wake at 1D looks Ok, but could be better, good prediction at 4D
 - Thrust OK
 - Cp: not to good for T2, (more drag needed?)
- Improvements
 - Better aerofoil data 2D, measured

Wind Farm modelling : Lillgrund

Wind Farm Study

- Aim of study:
 - Wind farm simulation using LES/AD
 - Evaluated method
 - Investigate simple farm optimization by de-rating front row (pitch)
- One inflow sector is investigated (120±2.5°)
- One wind speed is considered (8m/s)
- Evaluation
 - Sensitivity to turbulence intensity
 - Comparison with the measured data
 - De-rated case, i.e. front row pitching

Lillgrund Wind Farm

- The Lillgrund wind farm:
 - Located offshore between Malmö and Copenhagen
 - 48 turbines, Siemens SWT-93-2.3MW, variable speed pitch controlled
 - Turbine spacing: 3.3D 4.3D
- Measured data for comparison
 - Production
 - Atmospheric conditions
- Farm efficiency : $\approx 75\%$

Actuator disc

One row, 4 turbines

- 3D AD -> Many AL fixed in space
- Loads using aerofoil data locally
 - Faster than AL
 - Lager timestep
 - Lower resolution

Numerical setup

Grid – Cartesian type

- 144 block, 64³
- 84R x 82R x 20R (R=46.5m)
- Fine resolution, 0.1R
- Stretching away from fine region

Turbine:

- Downscaled NREL 5MW
- R=46.5m
- Rated power 2.3MW

DTU Wind Energy

Department of Wind Energy

Flow – Neutral stability of ABL assumed

- 8m/s, 120±2.5°
- Shear exponent
- Turbulence, TI=4.7%

wind turbines
Mast

Turbulence: 0% 3.2% 4.7% 6.2%

Department of Wind Energy

wind turbines
Mast

Front row de-rating, 0,2,4,6deg

wind turbines
Mast

DTU Wind Energy Department of Wind Energy

Technical University of Denmark

DTU

Summary

- LES AD simulation of power performed and compared to measurements
 - Turbulence sensitivity
 - De-rating

- Good comparison for inflow sector is investigated (120±2.5°)
- No improvement from front row pitch

Thank you!

K Nilsson, KS Hansen, S Ivanell, JN Sørensen, S Sarmast, D Henningson, R Mikkelsen

DTU Wind Energy Department of Wind Energy

Technical University of Denmark

26

DTU