

Fast wake modelling with Fuga

Søren Ott & Morten Nielsen

麺 Fuga – main features*

- Solves linearized RANS equations
- Closure: mixing length, k- ε or 'simple' ($v_t = \kappa u_* z$)
- Fast, mixed-spectral solver using pre-calculated look-up tables (LUTs)
- No computational grid, no numerical diffusion, no spurious mean pressure gradients
- Integration with WAsP: import of wind climate and turbine data.
- 10⁶ times faster than conventional CFD!

* Søren Ott, Jacob Berg and Morten Nielsen: 'Linearised CFD Models for Wakes', Risoe-R-1772(EN), 2011

Technical University of Denmark

Stage 1

- Objective:
 - Implement and validate a linearized CFD model
- Results:
 - Preludium: A fast solver that produces Look-Up Tables (LUTs)
 - Trafalgar: Constructs solitary wake LUTs using FFIT
 - Fuga: Graphical user interface. Superposition of wakes with non-linear adjustment of the $C_{t}s$.
 - Choice of closure
 - Validation against Horns Rev1, Nysted 1 and Nibe.

Technical University of Denmark

Block diagram

DTU

VNINICIAN

User friendly GUI

This one!

Validation: Horns Rev data. 8 m/s

Simple closure: $v_t = \kappa u_* z$ No adjustable parameters!

Validation Horns Rev data. 10 m/s

Fuga predictions vs. Nysted data. 8 m/s

- 11	W721						0.00
12		W 4 31	W 4 41	W 4 51			
	W ‡ 22	W 4 32	W 4 42		W 7 61	W 本 71	W 4 81
4 13	W 4 23	W 4 33	14/7 40	W 4 52	W # 62	W 4 72	W/Tor
本 14	W 4 24	W/7 24	VV 4 43	W 4 53	W 4 63	W/773	VV 1 02
* 15	11/12/25	W +0 4	W 7 44	W 4 54	W 2 64	11473	W 4 8
	11120	W#35	W T 45			W 4 74	W 7 8
/416	W 4 26	W 4 36	11/7 10	W 165	W 76 5	₩#75	
V 本 17	W 4 27	\M/ X 37	VV 14 0	W 4 56	W 4 66	W A 76	VVTC
V 4 18	W/228	W L SI	W 4 47	W 4 57	W 7 67	1110	W 4 ŧ
M7510	11120	W 4 38	W 4 48	W/758		W 4 77	WA
v + 19	W 4 29	W 4 39	W/749	W+00	W 7 68	W 本 78	WZ
		W+13	W 4 59	W 7 69	W 本 79		
							10/7

Fuga predictions vs. Nysted data. 10 m/s

- 11	W721						0.04
1 2		W 4 31	W 4 41	W # 51			
	W 4 22	W 4 32	W 4 42		W P 61	W 本 71	W 4 81
13	W 4 23	W 4 33	W/7 42	W462	W 4 62	W 4 72	W78
4 14	W ‡ 24	W/134	VV 1=1 3	W 4 53	W 4 63	W 4 73	W H 02
# 15	W#25	W+04	W 4 44	W 4 54	W 4 64	1110	W 4 8
	11120	W#35	W745			W 本 74	W 4 8
41 0	W 4 26	W 4 36	MAG	W 105	₩₩65	W # 75	14/200
4 17	W 4 27	W/ X 37	W+40	W 4 56	W 4 66	W \$ 76	VV TC
/ ‡ 18	10/7028	W + 07	W 7 47	W 4 57	W 7 67		W 4 e
V 7 10	11120	W 4 38	W 4 48	W 4 58		W 4 77	WA
1110	W 4 29	W 4 39	W 7 49		W 4 68	W 7 78	W
				W 4 59	W 7 69	W 4 79	
							10/7

Validation: Farm wake effect (Horns Rev 1)

Lillgrund

📂 Fuga - version 1.5	
File Edit Help	
	File overview Turbine site list Production Single Wake Windfarm wake
	z=66.00 134 💌 Set Position Zoom 0 🚔 Auto Zoom
Lillgrund	
Turbine type	
SWT-2.3-93	
Atmospheric Boundary Layer	
Case	
Z0=0.00010000Zi=00400	
Wind at turbine hub height	
Key Value	
Wind Speed [m/s] 11.0	
Wind Direction [Dea] 260	
	Efficiency for direction Horizontal wind profile Vertical wind profile
SWT-2.3-93	Vertical profile at (1310874,6158130)
h=65.0 D=93.0	400 Hub height
2,000	300
₹1,500	E Free wind
¥1,000 / / € 0,0 ℃	<u>a</u>
§ 500- / 0.4	
	0
0 5 10 15 20 25 30	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Speed [m/s]	Speed (m/s)
I	

Validation: Lillgrund.

Simple closure: $v_t = \kappa u_* z$ and +/- 3 degree filter

Flow cases, part 1- engineering inflow sector

DTOC

Flow cases, part 1 – narrow inflow sector

Added features. Carbon Trust contract 2

- Flexibility: multiple turbine types, differentiated wind climate
- Rotor plane integration (7 point method)
- Stability : 'simple' approach using Monin-Obukhov theory
- Meandering: Use ideas taken from the Dynamic Wake Meandering (DWM) model
- Incorporation of HAWC2 library
- Validation: blind test against Rødsand data

Stability

Stability is taken into account through

- the mean profile:

 $U(z) = U_*/\kappa \{ \log(z/z_0) + \psi(z/L) - \psi(z_0/L) \}$

- the eddy viscosity :

 $v_{\rm t} = \kappa \, u_{\star} \, z/\{1 + \varphi(z/L)\}$

Notes:

- No buoyancy, no temperature equation
- No influence of the wake on the eddy viscosity
- Monin-Obukhov theory only strictly valid in the surface layer
- With winds from shore the boundary layer is in a transient state
- Numerical problems for stable conditions

Variable atmospheric stability – horizontal profiles

Variable atmospheric stability – vertical profiles

Meandering

Measurements with SgurrEnergy's Galion Lidar.

Spectral regimes

Larsén, Vincent & Larsen 2011

Technical University of Denmark

Non-stationarity and drifting wind direction

• No RANS without stationarity.

- Conventional wisdom says: 10 minutes of data represents a piece of a stationary time series. Each 10 min defines a single RANS flow case.
- But the 'mean' wind direction varies. Each 10 min should be represented by a range of flow cases.
- How much does the 'mean' wind direction vary in 10 minutes?

Horns Rev 1 met mast data

DTU

Drifting wind direction

• Definitions:

Wind direction : θ 10 minutes average of θ : θ_a Drift of θ_a during 10 minutes: $\Delta \theta_a = \theta_a (t+10min) - \theta_a (t)$ Rms value of $\Delta \theta_a$: $\sigma_{\Delta \theta a} = < (\Delta \theta_a)^2 >^{\frac{1}{2}}$

- $\sigma_{\Delta\theta a}$ is a measure of the shift of the average wind direction during 10 minutes.
- $\sigma_{\Delta\theta a}$ can be obtained from 10 minutes average wind vane data.

 $\sigma_{\Delta\theta a} = 4.7$ degrees

Effect of mean value drift

Nysted 278⁰+/-2.5⁰ bin

Meander model

DTU

- Meandering is modeled using Mann turbulence.
- The wake centreline is assumed to follow a passive fluid particle.
- Low pass filtering to average over a transverse slab.
- Spectra for different stabilities and heights fitted by Alfredo* to 10 minutes time series.
- Linear de-trending was applied to the time series. This removes the wind direction drift.
- Meandering and wind direction drift are modelled as separate and independent processes.
 - * Peña, Gryning & Mann (2010): On the length-scale of the wind profile,
 - Q. J. R. Meteorol. Soc. 136: 2119-2131

Windfarm wake

•Superposition

U1

u0

•Local thrust for sheltered wind speed

•Evaluate upwind turbines first

•Simple solutions for a set of wind direction

u2

•Linear- or gaussian-weighted average

u₃

•Wake meander by stochastic simulation of wake deflection

DWM problem

- DWM uses Mann turbulence only for *v* and *w*, while a fived value is assigned to *U*.
- Thus the centre 'particle' stays in a 2D slab.
- Problem: attractors because this flow field is compressible.

• Better to use the full, incompressible 3D field.

A model for turbulent diffusion in Mann turbulence

A good fit to the Lagrangian velocity auto-correlation function:

$$\langle v(t+\tau) v(t) \rangle = \sigma^2 (1 + \tau)$$

Meandering by Mann turbulence

 σ/u_* is rather small – not much meandering. Did de-trending kill the important scales?

Conclusions

- Fuga is fast and yields good results. It is a useful tool.
- Full CFD is 1000000 times slower and not necessarily better.
- There is almost no meandering in Mann turbulence. What went wrong?
- Non-stationarity of the wind direction is important for the interpretation of measurements. Sampling in very small wind direction bins introduces a large uncertainty because a 'true' wind direction cannot be precisely defined.
- Distance effect: lack of correlation for large spatial separation between met mast and turbines. Again: don't use small bins!
- Meandering means almost nothing for AEP estimates.
- Rotor plane integration lowers wake effect unfortunately