
1/18/2013 

Fast wake modelling with Fuga 
 
 
Søren Ott & Morten Nielsen 



Technical University of Denmark 
   

    
   

      Fuga – main features* 
 

• Solves linearized RANS equations 
 

• Closure: mixing length, k-ε or ’simple’ (νt=κu*z) 
  
• Fast, mixed-spectral solver using pre-calculated look-up tables (LUTs) 

 
• No computational grid, no numerical diffusion, no spurious mean 

pressure gradients 
 

• Integration with WAsP: import of wind climate and turbine data. 
 

• 106 times faster than conventional CFD! 
 
 
 
 
* Søren Ott, Jacob Berg and Morten Nielsen: ‘Linearised CFD Models for Wakes’,           

Risoe-R-1772(EN), 2011 
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Stage 1 
• Objective:  

 
  - Implement and validate a linearized CFD model 

 
• Results: 
 
  - Preludium:  A fast solver that produces Look-Up Tables (LUTs) 
 
  - Trafalgar: Constructs solitary wake LUTs using FFIT 
 
  - Fuga: Graphical user interface. Superposition  of wakes with non-linear 

adjustment of the Cts. 
 
  - Choice of closure 
 
  - Validation against Horns Rev1, Nysted 1 and Nibe.    
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User friendly GUI 
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Choice of closure 

Simple :νt = κ u
*
 z 

Mixing Length 

k -ε  

This one! 

Nysted data 
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Validation: Horns Rev data. 8 m/s 
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Simple closure:  νt=κu*z 

No adjustable parameters! 
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Validation Horns Rev data. 10 m/s  
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Fuga predictions vs. Nysted data. 8 m/s 
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Fuga predictions vs. Nysted data. 10 m/s 
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Validation: Farm wake effect (Horns Rev 1) 
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Lillgrund 
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Validation: Lillgrund. 

Simple closure:  νt=κu*z and +/- 3 degree filter  
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Flow cases, part 1- engineering inflow sector 

 Thanks to Kurt S. H
ansen for this slide 
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Flow cases, part 1 – narrow inflow sector 

 Thanks to Kurt S. H
ansen for this slide 
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Added features. Carbon Trust contract 2 
 
• Flexibility: multiple turbine types, differentiated wind climate 

 
• Rotor plane integration (7 point method) 

 
• Stability :  ‘simple’ approach using Monin-Obukhov theory 

 
• Meandering: Use ideas taken from the Dynamic Wake Meandering (DWM)  

model 
 

• Incorporation of HAWC2 library    
 

• Validation: blind test against Rødsand data 
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Stability 
Stability is taken into account through  
   - the mean profile:  
             U(z) = u

*
/κ {log(z/z0)+ψ(z/L)-ψ(z0/L)} 

    - the eddy viscosity :  
               νt  = κ u

* 
z/{1+ϕ(z/L)} 

 
Notes: 
     - No buoyancy, no temperature equation 
 - No influence of the wake on the eddy viscosity 
 - Monin-Obukhov theory only strictly valid in the surface layer  
 - With winds from shore the boundary layer is in a transient state  
 - Numerical problems for stable conditions 
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Variable atmospheric stability – horizontal 
profiles 

 

18 



Technical University of Denmark 
   

    
   

Variable atmospheric stability – vertical 
profiles 

19 
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Meandering 
 

20 18 January 
2013 

Measurements with SgurrEnergy’s Galion Lidar. 
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Spectral regimes  
 
 

  

Courtney & Troen 1990 

Larsén, Vincent & Larsen 2011 

drift - σ∆θa filter 

Universal range 

mean wind - θa filter 

meandering 

‘scrambling’ 

eddy viscosity and RANS 
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Non-stationarity and drifting wind direction 

• No RANS without stationarity.  
 

• Conventional wisdom says: 10 minutes of data represents a piece of a 
stationary time series.  Each 10 min defines a single RANS flow case. 
 

• But the ‘mean’ wind direction varies. Each 10 min should be represented 
by a range of flow cases. 
 

• How much does the ‘mean’ wind direction vary in 10 minutes?  
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Drifting wind direction 
• Definitions: 
        Wind direction : θ 
      10 minutes average of θ : θa 

         Drift of θa during 10 minutes:  
               ∆θa=θa(t+10min)-θa(t) 

        Rms value of ∆θa : σ∆θa = <(∆θa)2>½   

 

•  σ∆θa is a measure of the shift of the 
average wind direction during 10 minutes. 
 

•  σ∆θa can be obtained from 10 minutes 
average wind vane data.  

σ∆θa = 4.7 degrees 

Horns Rev 1 met mast data 
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Effect of mean value drift 
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Meander model   
• Meandering is modeled using Mann turbulence.  

 
• The wake centreline is assumed to follow a passive fluid particle. 

 
• Low pass filtering to average over a transverse slab. 

 
• Spectra for different stabilities and heights fitted by Alfredo* to 10 

minutes time series. 
 

• Linear de-trending was applied to the time series. This removes the wind 
direction drift.  
 

• Meandering and wind direction drift are modelled as separate and 
independent processes.   
 

 
 
 
 
 

             
  

25 18 January 
2013 

* Peña, Gryning & Mann (2010): On the length-scale of the wind profile,  

Q. J. R. Meteorol. Soc. 136: 2119–2131 
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Windfarm wake 

26 

•Superposition 

•Local thrust for sheltered wind speed 

•Evaluate upwind turbines first 

•Simple solutions for a set of wind direction  

•Linear- or gaussian-weighted average 

•Wake meander by stochastic simulation of wake deflection  

•Only at turbine positions 
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DWM problem 

• DWM uses Mann turbulence only for v and w, while a fived value is 
assigned to U.  
 

• Thus the centre ‘particle’ stays in a 2D slab.  
 

• Problem: attractors because this flow field is compressible. 
 
 
 
 
 
 
 
 
 

• Better to use the full, incompressible 3D field. 
 

27 18 January 
2013 
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A model for turbulent diffusion in Mann turbulence 

 
 A good fit to the Lagrangian velocity auto-correlation function: 

 
  〈v(t+τ) v(t)〉 = σ2(1 +



Technical University of Denmark 
   

    
   



Meandering by Mann turbulence 

29 18 January 
2013 

unstable 

stable 

σ/u* is rather small – not much meandering. 
Did de-trending kill the important scales?  
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Conclusions 
• Fuga is fast and yields good results. It is a useful tool.  

 
• Full CFD is 1000000 times slower and not necessarily better. 

 
• There is almost no meandering in Mann turbulence. What went wrong? 

 
• Non-stationarity of the wind direction is important for the interpretation 

of measurements. Sampling in very small wind direction bins introduces 
a large uncertainty because a ‘true’ wind direction cannot be precisely 
defined.  
 

• Distance effect: lack of correlation for large spatial separation between 
met mast and turbines. Again: don’t use small bins! 
 

• Meandering means almost nothing for AEP estimates.  
 

• Rotor plane integration lowers wake effect - unfortunately       
 
 
 
 

30 18 January 
2013 
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