Center for Wind Turbine Aerodynamics and Atmospheric Turbulence

Vortex Breakdown and Instability in the Near Wake of a Wind Turbine

Jens N. Sørensen

Department of Wind Energy Technical University of Denmark

Collaborators: DTU Vindenergi Robert Mikkelsen, Valery Okulov (DTU) Institut for Vindenergi Stefan I vanell, Dan Henningson, Sasan Sarmast (KTH)

Wake Aerodynamics

Wake development:

Development of the wake

Scenario:

- **1. Vortex system formed from circulation**
- 2. Roll-up into center vortex and distinct tip vortices
- 3. Destabilization of tip vortices
- 4. Break down into large-scale turbulence
- 5. Turbulent mixing
- 6. Interplay with meandering

The enigma of the wake model of Joukowsky

The far wake model by Joukowsky (1912)

Can vortex breakdown the limiting factor?

Swirl number:
$$S = \frac{\int_{0}^{R} \rho u u_{\theta} 2\pi r dr}{\int_{0}^{R} \rho u^{2} 2\pi R dr} = \frac{u_{\theta}(r=R)}{u_{D}} = \frac{q}{1-a}$$

-

Criterion for vortex breakdown (Squire (1960), Delery (1994)):

$$\frac{u_{\theta,\max}}{u_x} > 1.4 \Longrightarrow \frac{q}{(1-a)} > 1.4 \left(\frac{r_C}{R}\right)$$

Axisymmetric AD/NS analysis

The governing equations:

 $\frac{\partial \omega}{\partial t} + \frac{\partial u \omega}{\partial x} + \frac{\partial v \omega}{\partial r} - \frac{\partial}{\partial x} \left(\frac{w^2}{r} \right) = \varepsilon \left[\frac{\partial}{\partial x} \left(\frac{\partial \omega}{\partial x} \right) + \frac{\partial}{\partial r} \left(\frac{\partial \omega}{\partial r} \right) + \frac{1}{r} \frac{\partial \omega}{\partial r} - \frac{\omega}{r^2} \right] + \frac{1}{\rho} \frac{\partial f_r}{\partial x} - \frac{1}{\rho} \frac{\partial f_r}{\partial r}$ $\frac{\partial w}{\partial t} + \frac{\partial uw}{\partial x} + \frac{\partial vw}{\partial r} + \frac{2vw}{r} = \varepsilon \left| \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial x} \right) + \frac{\partial}{\partial r} \left(\frac{\partial w}{\partial r} \right) + \frac{1}{r} \frac{\partial w}{\partial r} - \frac{w}{r^2} \right| + \frac{f_{\theta}}{\rho}$ $\frac{\partial}{\partial r} \left(\frac{\partial \psi}{\partial r} \right) + \frac{\partial}{\partial r} \left(\frac{\partial \psi}{\partial r} \right) - \frac{1}{r} \frac{\partial \psi}{\partial r} = r\omega$ $u = -\frac{1}{r} \frac{\partial \psi}{\partial r}, \quad v = \frac{1}{r} \frac{\partial \psi}{\partial r}, \quad \omega = \frac{\partial v}{\partial r} - \frac{\partial u}{\partial r}$

Actuator disc modelling and body forces

The body forces:

$$f_r = 0, \quad f_x = \rho u_\theta \left(\Omega r + \frac{1}{2}u_\theta\right), \quad f_\theta = \rho u_D u_\theta$$

Assumed velocity profiles:

$$\frac{u_{\theta}}{U_0} = \frac{q}{r} \left[1 - \exp\left(-1.256\left(\frac{r}{\delta}\right)^2\right) \right], \quad u_D = U_0(1-a)$$

The resulting body forces:

$$\frac{f_x}{\rho U_0^2} = \lambda q + \frac{q^2}{2r^2} \cdot g^2, \ \frac{f_\theta}{\rho U_0^2} = \frac{q(1-a)}{r} \cdot g, \quad g = 1 - \exp\left(-1.256\left(\frac{r}{\delta}\right)^2\right)$$

DTU

Comparison between AD-NS and momentum theory

Maximum Power Coefficient

TSR=1, B=0.15 Cp=0.2238, Ct=0.3095

TSR=1, B=0.25 Cp=0.3356, Ct=0.5297

TSR=1, B=0.35 Cp=0.4173, Ct=0.7489

Modeling of vortex wake behind rotors

Far wake model of Joukowski (1912)

Conclusion from stability analysis:

The vortex wake behind a wind turbine is <u>unconditional unstable</u>

Okulov and Sørensen JFM 576 (2007)

Observations

Felli et al. (2008)

The actuator disc/line techniques

Basic idea: • Replace rotor blades by body forces

- Determine body forces from aerofoil data
- Simulate flow domain using EllipSys/LES

Wake breakdown due to presence of low upstream amplitude excitation

Mutual inductance instability of tip vortices

Ivanell et al (2010)

Mutual inductance instability of tip vortices

Ivanell et al (2010)

Mutual inductance instability of tip vortices

Relations between wake and rotor charateristics

Geometry of of wake:
$$\frac{N_b h}{2\pi R} = \frac{U_c}{\Omega R} \Longrightarrow h = \frac{2\pi R U_c}{N_b \lambda U_o}$$

Assuming constant loading: $\Gamma = \frac{\pi U_o^2 C_T}{N_b \Omega}$

Roller bearing analogy:
$$U_c = C_1 \cdot U_{wake} + (1 - C_1) \cdot U_o$$

From 1-D Momentum theory:
$$U_{wake} = U_o \sqrt{1 - C_T}$$

Combining:

$$\frac{\sigma R}{U_c} = \frac{N_b \lambda C_T}{16 \left[1 + C_1 \left(\sqrt{1 - C_T} - 1\right)\right]^3}$$

Expression for length of near wake

We get the following expression for the length of the near wake (defined as the stable wake of the tip vortices):

$$\frac{l}{R} \simeq -\frac{16\left[1 + C_1\left(\sqrt{1 - C_T} - 1\right)\right]^3}{N_b C_T \lambda} \ln(C_2 \cdot Ti)$$

Conclusions

- It has been shown both theoretically and numerically that the wake at small, i.e. TSR < 3, may be subject to Vortex Breakdown
- From stability analysis we have shown that the wake behind a wind turbine is unconditional unstable
- From linear stability theory it was shown that the normalized amplification factor is equal pi/2
- Defining the near wake as the linear area of amplitude amplification, a simple expression for determining the length of the near wake has been established
- The expression has been preliminary validated against LES/AL simulations and visualizations of a model rotor