

8281828

Validation of the 3D viscous-inviscid interaction model MIRAS

Néstor Ramos García Jens Nørkær Sørensen Wen Zhong Shen

 $(EIv'')''=q-\rho A\ddot{v}$

DTU Wind Energy Department of Wind Energy

PRESENTATION LAYOUT

- DTU
- MIRAS, Method for Interactive Rotor Aerodynamic Simulations
 - Inviscid body modelling.
 - Free wake modelling.
 - Viscous boundary layer solver, Q³UIC.
 - Viscous-inviscid coupling.
- MIRAS validation for different scale rotor cases
 - NTNU ROTOR, (R0.4m).
 - DELFT ROTOR, (R0.6m).
 - MEXICO ROTOR, (R2.25m).
 - NM80 ROTOR, (R40.04m).
 - NREL 5MW ROTOR, (R62.9898m).
- Conclusions

MIRAS inviscid body modelling

The solution to the flow problem is reached by distribution of:

- Body quadrilateral **sources** (σ_p) .
- Body quadrilateral **doublets** (μ_p) .
- Released wake **vortex filaments** (μ_w).

The Neumann condition of no penetration is applied at the solid surfaces:

$$\sum_{p=1}^{N} A_p \mu_p + \sum_{w=1}^{Nw} A_w \mu_w + \sum_{p=1}^{N} B_p \sigma_p = -Q_{\infty} \cdot n_i$$

The sources strength is fixed to:

$$\sigma_j = Q_\infty \cdot n_j$$

The unsteady Bernoulli eq. is used to compute C_P

MIRAS wake modelling

• The Kutta condition reads:

$$\Gamma_w = \mu_u - \mu_l$$

• Time scheme for the vortex filament position updating:

- 1st to 4th order Adams Bashfourth
- 4th order Adams Bashfourth Moulton predictor-corrector
- **Scully** profile is used in the viscous core model.
- Initial vortex core, S_C , is set to be equal to a 10% of the local chord.

• **Squire** apparent turbulent eddy viscosity parameter, δ , is included to take into account the vortex core growth rate with vortex age.

• Leishman straining model is included to account for changes in vortex filament radius due to stretching and squeezing.

MIRAS V-I coupling diagrame

DTU

MIRAS boundary layer solver Q³UIC

• **Q³UIC** is used to introduce viscous effects into the 3D panel method.

$$\frac{\partial \theta_1}{\partial s} = -\frac{\theta_1}{u_e} \frac{\partial u_e}{\partial s} (2+H) + \frac{C_f}{2} + s_w p_r \frac{2Ro \cdot ls}{u_{2D}c} \delta_2 - \frac{1}{u_e} \frac{\partial u_e}{\partial s} (2\theta_2 - \delta_2) - \frac{ls}{c} (2\theta_2 - \delta_2)$$
$$\frac{\partial \theta_2}{\partial s} = -\frac{2\theta_2}{u_e} \frac{\partial u_e}{\partial s} + \tan \beta_w \frac{C_f}{2} + \frac{ls}{c} \left(\theta_1 + \delta_1 - \delta - \delta_3 + s_w p_r \frac{2Ro}{u_{2D}} (\delta - \delta_1)\right) - \frac{1}{u_e} \frac{\partial u_e}{\partial r} (2\delta_3 + \delta)$$

- **Q³UIC** solves the boundary layer at each span station given:
 - Airfoil Geometry.
 - Reynolds number.
 - Rotational parameters (R₀ & I).
 - Angle of attack.

• Transpiration velocities **Q3UIC** \rightarrow Extra source distribution in RHS vector.

NTNU MODEL ROTOR

Airfoil	=	S826
R	=	0.4 m.
Root chord	=	0.08 m
Tip chord	=	0.0258 m

SURFACE MESH		
Spanwise cells	=	19
Chorwise cells	=	160
Wake revolutions	=	25
Angular discret.	=	20 °

Qw	=	10 m s ⁻¹
TSR	=	1 to 12
Reynolds number	=	5.10⁴ to 2.10⁵

BL free transition

NTNU MODEL ROTOR

DELFT MODEL ROTOR

MEXICO MODEL ROTOR

Boundary layer trip = 5% from LE

MEXICO BLADE AERODANYMICS, N / T

DTU

MEXICO BLADE, C_P , 24 m s⁻¹

DTU

Ħ

MEXICO ROTOR WAKE(24 ms⁻¹)

2.5MW NM80 WIND TURBINE

Reynolds numbers = $1.7 \cdot 10^6$ to $7 \cdot 10^6$

Boundary layer trip = 5% from LE

D

Ω

 Q_w

2.5MW NM80 WIND TURBINE

NREL 5MW VIRTUAL ROTOR

BL free transition

NREL 5MW VIRTUAL ROTOR

CONCLUSIONS

- IT HAS BEEN PROVEN THAT THE **MIRAS** CODE CAN BE USED TO **SUCCESFULLY SIMULATE WIND TURBINE ROTORS** UNDER AXIAL INFLOW CONDITIONS.
 - VALIDATIONS HAVE BEEN CARRIED OUT FOR FIVE DIFFERENT ROTOR GEOMETRIES RANGING FROM MODEL ROTORS TO LARGE SCALE WIND TURBINES.
- THE **VISCOUS-INVISCID COUPLING WITH Q³UIC IMPROVES** GENERALLY THE PREDICTION OF BLADE AERODYNAMICS AND WAKE CHARACTERISTICS. ESPECIALLY AT HIGH WIND SPEEDS WHERE LARGER FLOW SEPARATION REGIONS EXIST.
- THE MODEL **SLIGHTLY OVERPREDICTS C_P AT HIGH TIP SPEED RATIOS**, PROFILE DRAG SEEMS TO PLAY AN IMPORTANT ROLE AT SUCH HIGH TSR.
- A **FINE CHORDWISE BLADE DISCRETIZATION** IS IMPORTANT TO CAPTURE THE CORRECT POWER COEFFICIENT AT HIGH TIP SPEED RATIOS.

FUTURE WORK

- A DOUBLE WAKE MODEL WILL BE IMPLEMENTED FOR ROTOR SIMULATIONS UNDER DEEP STALL CONDITIONS (ongoing work).
- YAW SIMULATIONS WILL BE PERFORMED AND COMPARED AGAINST EXPERIMENTAL DATA (ongoing work).
- THE VORTEX FILAMENTS IN THE WAKE WILL BE TRANSFORMED INTO VORTEX PARTICLES (Master project starting in Januar-February, collaboration with Delft).
- GPU, MPI AND FAST MULTIPOLE EXPANSION FOR SPEEDING UP THE SIMULATIONS (Collaboration with Delft, Emmanuel?).

THANK YOU FOR YOUR ATTENTION.

DTU Mekanik Institut for Mekanisk Teknologi