Coupling the Navier Stokes actuator line model with the aeroelastic solver HAWC2 – work in progress

Niels Troldborg and Joachim Heinz

Wind Energy Department, DTU Wind Energy, DK-4000 Roskilde, Denmark

Risø DTU National Laboratory for Sustainable Energy

- Blades represented as lines
- Flow field determined from 3D N-S simulations

- Blades represented as lines
- Flow field determined from 3D N-S simulations
- Aerodynamic forces at each blade section determined from 2D airfoil data

Blades represented as lines

4

- Flow field determined from 3D N-S simulations
- Aerodynamic forces at each blade section determined from 2D airfoil data
- Blade forces transferred to N-S solver using Gaussian smearing to avoid singular behaviour

$$\mathbf{f} = \begin{pmatrix} L \\ D \end{pmatrix} = \frac{1}{2} \rho V_{rel}^2 c \begin{pmatrix} C_L(\alpha) \mathbf{e}_L \\ C_D(\alpha) \mathbf{e}_D \end{pmatrix}$$

Generic coupling framework

Step 1:

Wrap the programs participating in the coupling

Step 2:

Import the wrapped programs into python

Step 3:

Python orchestras the execution of the programs and organizes the input/output handling via the common script

Generic coupling framework

- > A framework for executing and connecting different types of codes and optimizers
- Open source (written in Python)
- Minimally intrusive
 - solvers are kept as independent entities
 - leave participating codes unchanged
- Generic
 - standardized interface function
 - models can easily be exchanged or added
- Flexible
 - connect codes written in different languages
 - connect codes run on different platforms

Generic coupling framework

- > A framework for executing and connecting different types of codes and optimizers
- Open source (written in Python)
- Minimally intrusive
 - solvers are kept as independent entities
 - leave participating codes unchanged
- Generic
 - standardized interface function
 - models can easily be exchanged or added
- Flexible
 - connect codes written in different languages
 - connect codes run on different platforms

Simulating the NREL 5MW wind turbine

DTU

- > Wind speed: $V_{\infty} = 8 \text{ m/s}$
- > Rotational speed $\Omega = 0.964$ rad/s
- Forces prescribed according to results from a full rotor simulation
- Blade section coordinates and blade loading provided by external routine (HAWC2 emulator)

Simulating the NREL 5MW wind turbine

- > Wind speed: $V_{\infty} = 8$ m/s
- > Rotational speed $\Omega = 0.964$ rad/s
- Forces prescribed according to results from a full rotor simulation
- Blade section coordinates and blade loading provided by external routine (HAWC2 emulator)

Conclusions

The actuator line method has been included in the OpenMDAO framework

The actuator line method has been modified to make it as general as HAWC2, i.e. can handle a multiple of different types of turbines.

First test case shows good results