

Cylindrical vortex wake models with application to tilted rotor

Emmanuel Branlard - Mac Gaunaa

Comflow Meeting 2013-11-01

DTU Wind Energy Department of Wind Energy

1 November

1. Presentation of the model

The wake fits into a cylinder

Lifting-line

Constant Circulation

The wake fits into a cylinder

The wake fits in a cylinder

The wake fits in a cylinder

Skewed wake view

DTU

Decomposition of (skewed) helical wake

Viewed with infinite number of blades

Viewed with infinite number of blades

Straight Case (NO tilt)

tilt - BEM

This is the basis of BEM tilt models. Why not including the rest?

2. Few words on the straight cylinder case

2. Few words on the straight cylinder case

Ui/Uw (tan.+longi.+root+bound) 1.02.0 1.5 0.8 1.0 0.5 -0.6 r/r₀ [-] 0.0 a=> 0.4 -0.5-1.0-0.2 -1.5-2.00 -3 $^{-2}$ -10 2 3 1 z/r_0 [-]

3. Tangential vorticity

3. Tangential vorticity

In-plane component for various skew angles

Engineering models provided using wake properties

3. Tangential vorticity

Engineering models – limiting case

DTU

Root vortex

Root vortex (in plane component)

Root vortex (normal component)

Tip-vortices

Tip-vortices – Far Wake

Tip-vortices – In plane component

Tip-vortices – normal component

Engineering models provided

5. Bound vortex actuator disk

$$u_{\theta}^{r'}(x) = -\frac{\Gamma_{\text{tot}}}{4\pi^2 z} \sqrt{\frac{r}{r'}} \frac{z^2}{r^2} \sqrt{m} \left[K(m) + T_1 \Pi(n_1, m) - T_2 \Pi(n_2, m) \right]$$

Should we consider it for BEM codes?

BEM implementation

$$aU_0R_z \quad R_z = 1 + 2F_t(r,\chi)\tan\frac{\chi}{2}\cos\psi$$

$$|$$

$$u_z = u_{z,t} + u_{z,r} + u_{\chi,r}$$

$$u_{\psi} = u_{\psi,t} + u_{\psi,r} + u_{\psi,l}$$

$$|$$

$$a'\Omega rR_{\psi} \quad R_{\psi} = \frac{1}{1 - \cos\psi\sin\chi}\cos\chi$$

Conclusions

- A new semi-analytical Yaw/Tilt model that accounts for finite tip-speed ratio
- Full velocity field from longitudinal and tangential vorticity obtained with combined analytical and numerical integration
- Simple approximations or empirical formulae can be derived for implementation in BEM codes
- Influence of longitudinal tip-vorticity is small compared to other components

Future work

- Implementation in BEM
- Comparison with free-wake vortex code and experiments
- Relaxing infinite number of blade assumption (tip-losses)
- Relaxing the constant circulation hypothesis

Thank you for your attention

and the first of