Analysis and results from the merged wake experiment

Ewan Machefaux Gunner Larsen Niels Troldborg Kurt Hansen Jakob Mann Nikolas Angelou Torben Mikkelsen

DTU Wind Energy Department of Wind Energy

Motivation

- Provide high resolution measurements of merged wake
- Assess performance of our CFD model / approach...
 - Neutral ABL wake interaction
 - Wake deficit, turbulence intensity, power and thrust.
- ... Towards more realistic situation
 - EllipSys3D/HAWC2: wind turbine control
 - Atmospheric stability effects
- Use validated CFD models (and experimental results) to develop a simpler merged wake model
 - Parametric CFD study: spacing, rotor loading.
 - Extension of Dynamic Wake Meandering model in HAWC2.
 - Wind farm optimization toolbox

- Oct. 2012. to May 2013
- NTK sensor failure, optical cable damaged, over heating of spinner lidar, tilting mechanism failure, broken scanner (twice)
- 3.5 hours of merged wake measurements

Experimental analysis

- high spatial and temporal resolution of the merged wake flow field
- detailed structure visualization
- .. and turbulence characteristics

Mutual validation exp. / num.

DTU

• Key parameters to characterize experimentally

- Turbine yaw misalignments
- Rotor relative positions (alignments with incoming wind)
- Turbulence characteristics of incoming wind
- Terrain, site roughness, atmospheric stability

• But....

- Tellus turbine is not instrumented
 - No power, thrust force, rpm, azimuthal rotor position ... (wake or not?)
 - Wake is deflected to the left systematically
- Nordtank is well instrumented but questionable sensors
 - Yaw sensor offset when compare to mean direction by sonic
 - Strain gauges calibration for CT
- Lidar malfunctions/limitations
 - Tilting mechanism failure of reference wake
 - Spatial and time resolution limitations

Experimental analysis: forward scanning lidar

Unit 351 prototype

- Scanning through the Nordtank rotor
- Conical pattern
- 48.8 Hz, sweep time 1s
- Blade passage filtering required

Experimental analysis: forward scanning lidar

Geometrical model for blade discarding

Experimental analysis: yaw misalignment

• Wake systematically located to the left: Yaw or lidar mounting offset?

- constant angle of -9.3deg in near wake
- assumed to be constant yaw error
- de-calibration of wind vane ?

	FC=40m, 2D	FC=60m, 3D
χ_t	-9.26deg	-9.31deg
y_o	-6.53m	-9.85m
$\sigma \chi_o$	2.1 deg	1.9deg

Experimental analysis: yaw misalignment

- Yaw sensor missing
- Theory based on vortex cylinder model
- Relates the measured wake skew angle with yaw

$$\begin{split} \chi &= (0.6a+1)\theta_{yaw} * \\ \chi &= (0.3CT+1)\theta_{yaw} * * \\ \uparrow \\ \text{Tellus: BEM} \\ \text{Nordtank: measured by strain gauges} \end{split}$$

• Using sensor

$$\chi_m = -8.46^{\circ}$$

$$\theta_{yaw,\chi_m} = -7.01^{\circ}$$

$$\theta_{yaw,sensor} = -7.25^{\circ}$$

* Wagenaar, J. W., & Schepers, J. G. (2012). Controlling Wind in ECN 's Scaled Wind Farm, (APRIL), 16–19.

** D. Micallef, "MEXICO Data Analysis, Stage V – Investigation of the Limitations of Inverse Free Wake Vortex Codes on the Basis of the MEXICO Experiment", TUDelft/University of Malta

Experimental analysis: merged wake test case

- selected time series
- asymmetric flow: different rotor size, Tellus systematic yaw
- alignment: sonic measurement and theoretical alignment (Google Earth)

Experimental analysis: turbine lateral displacement

- cross correlation between reference wake and forward scanning lidar
- assume stream wise correlation of the wind speed: no NTK induction

$$P(\delta_x) = \frac{1}{H} \sum_{i=h_0}^{H} \left[|(U_{l-RW}h(i) - U_{l-FW}h(i))| \quad |(U_{r-RW}h(i) - U_{r-FW}h(i))| \right]$$

Numerical work: methodology

- EllipSys3D LES
- Actuator Disk, airfoil data, fixed yaw
- Log law inlet: best fit
- Turbulence: Mann spectral tensor fit
- Neutral ABL
- •19.9 million cells Cartesian mesh, 60 cells per D

Numerical work: Normalized velocity

1.5

Ref. Wake

Wake

1.1

Numerical work: added wake turbulence

	Simulated	Measured	Design	
Nordtank Elec. power [kW]	86.0 kW	81.8 kW	137.2 kW	K
Thrust [kN]	28.9 kN	25.4 kN	31.9kN	
Tellus Elec. power [kW]	26.2 kW	-	24.7 kW	
Thrust [kN]	5.9 kN	-	6.8 kN	

Without Tellus upstream

Numerical work: wake accumulation

- CFD model used for wake accumulation investigation
 - nearest (dominant) wake (in DWM)
 - linear summation of wakes
 - root-sum-square (quadratic) summation of wakes
 - average of linear and root-sum-square summation (ARL)

- ARL closest to simulated MW profile in this particular case
- Pitch Vs Stall regulated? Deep array effect?

Conclusion

- New post processing techniques developed.
- EllipSys3D LES AD neutral ABL in yawed turbine: very good agreement.
- Impact of atmospheric stability currently investigated (exp., num.)

Future work:

- CFD based parametric study
 - LES (expensive), RANS
 - Vortex method: Omnivor/ HAWC2
 - Validation & extension of HAWC2/DWM, multiple wakes and deep array
- Experimental work:
 - use of high speed lidar recordings for characterization of single wake turbulence