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Introduction
Large Scale Wind Turbines
Increasing the rotor size may potentially lead to two obvious aerodynamic
issues

� High Mach numbers in the tip region

� Possible to avoid

� Might be harmful for performance

� High Reynolds numbers

� Hard to avoid

� Might be beneficial for performance

� Difficult to measure in controlled
environment

DTU 10 MW Reference Turbine
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Introduction
Airfoil performance at high Reynolds Numbers

We expect that increasing the Reynolds Number will:

� Decrease the viscous effects due to the thinning of the boundary layer

� Promote earlier transition due to increased Reynolds number

Quantification the effects can be done by:

� Measurements

� Tunnel measurements are difficult to obtain at high Re and low M

� Openly available data are sparse

� Computations

� Model performance in this range is unknown
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Introduction
Laminar turbulent transition

� The transition process depend on many
parameters

� Reynolds Number

� Free stream turbulence level

� Laminar separation bubbles

� Cross flow

� Surface roughness

� Mass injection

� Typically approaches for transition
modeling

� en method (Orr-Sommerfeld eqn.)

� Empirical correlations

� Michel

� Mayle

� Abu-Ghannam and Shaw

� Suzen
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Introduction
The γ − Reθ Correlation based transition model

� The model is based on comparing the local Momentum Thickness
Reynolds number with a critical value from empirical expressions

Reθ = Reθt

� The following relation is used to simplify the computations in a general
CFD code

Reθ =
Reνt max

2.193

� The model is based on transport equations, and can easily be
implemented in general purpose flow solvers

� In the present form the model handles natural transition, by-pass
transition, and separation induced transition

� The transition model is coupled to the k − ω SST model through the
production and destruction terms in the k-equation
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Introduction
En model for natural transition

The En method is based on analyzing the behavior of small disturbances in
the boundary layer

ψ(y) = φ(y) exp [i(αx − ωt)]

The disturbances are inserted in the Navier-Stokes equations, and linearized
to give the Orr-Sommerfeld equation

(U∗

− c∗)(φ′′

− α
2
φ)− (u∗)′′φ =

−i
αReθ

(φ′′′′

− 2α2
φ
′′ + α

4
φ)

The Orr-Sommerfeld equation is solved with the following boundary
conditions:

φ(0) = φ
′(0) = 0 and, φ(∞) = φ

′(∞) = 0

In the EllipSys, the En model can be used together with a bypass and a
bubble criteria.
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Computational Setup
Flow Solver

� We use the EllipSys2D incompressible solver.

� Diffusive terms by second order accurate central differences.

� Convective terms by QUICK.

� Steady state computations.

� Turbulence modeling by the k − ω SST model

� Transitional computations using γ − Reθt transition model and En model

� Reynolds number [3-40] million.
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Test Cases
Selected cases

� NACA63 − 018

� DU00 − W − 212

� NACA642A015
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Test Case, NACA63-018
Computational setup

� Airfoil computations for Re=[3, 9, 20] million

� Using three transition models, En, En + BP and γ − Reθ

� For natural transition we assume (N=9)

� Mesh resolution 384 × 256
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Test Case, NACA63-018
Performance for varying Re
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The correlation based model do not respond correctly to varying Re !
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Test Case, DU00-W-212
Computational set-up

� Airfoil computations for Re=[3, 9, 15] million

� Using three transition models, En, En + BP and γ − Reθ

� All assuming natural transition (N=9)

� Mesh resolution 384 × 256
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Test Case, DU00-W-212
Lift, Natural Transition
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Test Case, DU00-W-212
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Test Case, DU00-W-212
Lift, Natural Transition
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Test Case, DU00-W-212
Drag, Natural Transition
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Test Case, DU00-W-212
Drag, Natural Transition
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Test Case, DU00-W-212
Drag, Natural Transition
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Test Case, DU00-W-212
Transition Location, Natural Transition
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Test Case, NACA64 2A015
Computational setup

� Airfoil computations for Re=[10:40] million, AOA=0 deg.

� Using two transition models, En and γ − Reθ

� Mesh resolution 384 × 256
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Test Case, NACA64 2A015
Performance at high Re
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Test Case, NACA64 2A015
Performance at high Re
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Explanation
Behavior of the correlation based model
The following behavior is observed

� The Reynolds number is varied through the viscosity

� The pressure distribution stays nearly constant

� Turbulent quantities are unchanged away from the airfoil

� The critical Reynolds number predicted by the γ − Reθ model stays
constant
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Conclusion
Conclusion and outlook

We need further validation at high Re and relatively low Mach

� Wind turbine rotors will face high Re with increasing size

� Lift is weakly dependent on the transition location in normal operation
even at high Re

� The available data show that the γ −Reθ model over-predict drag at high
Re

� Very little data available for comparison

� New data will be provided by the AVATAR project for the DU00-W-212
airfoil

� The National Wind Tunnel could provide data Re ∼ 10 Mill for low AOA
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