

Design and experimental validation of thick airfoils for large wind turbines

Iva Hrgovan

Wen Z. Shen Wei J. Zhu Jesper Madsen Rolf Hansen

DTU Wind Energy Department of Wind Energy

Outline

- Airfoil design
 - The method
 - Optimisation algorithm
 - Optimisation results
- Experiment
 - DTU-230
 - DTU-236
- Comparison of prediction and experiment
- Conclusion

Motivation

- Increasing power requirements
- With each generation wind turbines are getting larger
- Increasing demand on structural and aerodynamic efficiency
 - Thick airfoils used on larger part of the blade
 - Aerodynamic performance becomes more important
- Objective create new family of thick airfoils (30 % and 36% relative thickness)

Design method

- DIRECT design
 - A given geometry
 - Calculate aerodynamic performance (in as many design points)
 - Numerical optimisation
 - More flexible
 - Allows multidisciplinary optimisation with multiple constraints

Shape perturbation function

- adding smooth perturbations Δy to an initial airfoil
- Δy are a linear combination of base functions P_k as

- δ_k , ξ , η design variables
- g(k) fixed parameters
- The airfoil is split to upper and lower side with leading edge and trailing edge points fixed at x=0 and x=1
- 2·N+2 DOFs

Optimisation algorithm

gradient-based constrained optimisation algorithm

- + general flow solver XFOIL
- response parameters from XFOIL can be directly used as design objectives
- Maximise power coefficient in both clean and rough cases for a range of angles of attack

$$bbj = \min\left(\frac{1}{C_p}\right), C_p = f(C_L, \frac{L}{D})$$

Subject to equality and inequality constraints

 Structural integrity is expressed through a concept of "effective thickness-to-chord ratio"

Results – DTU-230 and DTU-236

• Shape compatibility with DTU-2xx family

20

Comparison with similar airfoils

DTU-230, NACA 63-430, FFA-W3-301

 $Re = 1.47 \cdot 10^6$, XFOIL, $e^N = 9$

Experiments

- Low-speed wind tunnel at LM Wind Power Blades (Lunderskov)
- Closed circuit, variable fan-speed, with temperature control
- TI around 0.1%
- Max speed 105m/s

 $Re = 6 \cdot 10^6$ for c = 0.9 m

M = 0.3

Source :

Bæk,Fuglsang, (2009) Experimental Detection of Transition on Wind Turbine Airfoils

Experiments

- Campaigns March and April 2014.
- Reynolds numbers (1.5), 3, (4), (5) and 6 millions
- Added leading edge roughness
 - Zigzag tape at 2% chord on the upper surface
 - Zigzag tape at 5% chord on the upper surface and 10% chord on the lower surface
 - Bump tape at 2% chord on the upper surface
- Devices
 - Gurney flaps
 - Vortex generators at 30% and 40% chord
- Combinations of different devices and LER
- In total 45 and 48 series

Comparison of XFOIL and experiment DTU-230

Comparison of XFOIL and experiment DTU-230

DTU-230 Vortex Generators

DTU-230 with Gurney flaps

DTU-236

Comparison of XFOIL and experiment DTU-236

DTU-236 leading edge roughness

Conclusion

- Shape perturbation function is a good method easy to implement and manageable
 - Small number of design variables
 - Many possibilities regarding constraints
- new airfoils DTU-230 and DTU-236 satisfying performance
- More research on flow solvers for thick airfoils is needed
- Experimental data should be also taken with precaution- very important to know details about the tunnel and the campaign
- Future work use the new airfoil family for full blade design
 - Optimise planform to reduce the noise
 - Validate with CFD

Thank you for your attention