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Outline 
• Airfoil design  

– The method 
– Optimisation algorithm 
– Optimisation results 

• Experiment  
– DTU-230 
– DTU-236 

• Comparison of prediction and experiment 
• Conclusion 
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Motivation 
• Increasing power requirements  
• With each generation wind turbines are getting larger  
• Increasing demand on structural and aerodynamic efficiency 

– Thick airfoils used on larger part of the blade  
– Aerodynamic performance becomes more important 

 
• Objective – create new family of thick airfoils ( 30 % and 36% relative 

thickness)  
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Design method  
 

• DIRECT design 
– A given geometry 
– Calculate aerodynamic performance ( in as many design points)  
– Numerical optimisation 

 
 

– More flexible 
– Allows multidisciplinary optimisation with multiple constraints 
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Shape perturbation function 
• adding smooth perturbations Δy  to an initial airfoil 
• Δy  are a linear combination of base functions 𝑃𝑃𝑘𝑘 as 

 

Δy i =  �𝛿𝛿𝑘𝑘𝑃𝑃𝑘𝑘 𝑖𝑖
𝑁𝑁

𝑘𝑘=1

 

𝑃𝑃𝑘𝑘 = sin𝜉𝜉,𝜂𝜂  𝜋𝜋𝜋𝜋 𝑘𝑘 𝑔𝑔 𝑘𝑘  
 

• 𝛿𝛿𝑘𝑘 , 𝜉𝜉, 𝜂𝜂  - design variables 
• 𝑔𝑔 𝑘𝑘     - fixed parameters 

 
• The airfoil is split to upper and lower side with leading edge and trailing 

edge points fixed at x=0 and x=1 
• 2·N+2  DOFs 
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Optimisation algorithm 
 gradient-based constrained optimisation algorithm 

 
+ general flow solver – XFOIL  
 
• response parameters from XFOIL can be directly used as design 

objectives 
• Maximise power coefficient in both clean and rough cases for a range of 

angles of attack  
 

𝑜𝑜𝑜𝑜𝑜𝑜 = min
1
𝐶𝐶𝑝𝑝

,𝐶𝐶𝑝𝑝 = 𝑓𝑓(𝐶𝐶𝐿𝐿,
𝐿𝐿
𝐷𝐷

) 

Subject to equality and inequality constraints 
 

• Structural integrity is expressed through a concept of “effective 
   thickness-to-chord ratio” 
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Results – DTU-230 and DTU-236 
• Shape compatibility with DTU-2xx family 

7 



DTU Wind Energy, Technical University of Denmark 
   

    
   

Comparison with similar airfoils 
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DTU-230, NACA 63-430, FFA–W3-301 

Re = 1.47 · 106 , XFOIL, eN = 9 
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Experiments 
• Low-speed wind tunnel at LM Wind Power Blades (Lunderskov) 
• Closed circuit, variable fan-speed, 

 with temperature control 
• TI around 0.1% 
• Max speed 105m/s  
 𝑅𝑅𝑅𝑅 = 6 ∙ 106 for 𝑐𝑐 = 0.9 m 
                    𝑀𝑀 = 0.3  

 
 

   
    

   

Source :  

Bæk,Fuglsang, (2009) Experimental Detection of Transition on Wind 
Turbine Airfoils 9 
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Experiments 
• Campaigns  - March and April 2014. 

 
• Reynolds numbers (1.5), 3, (4), (5) and 6 millions 
• Added leading edge roughness  

– Zigzag tape at 2% chord on the upper surface  
– Zigzag tape at 5% chord on the upper surface and 10% chord on the 

lower surface 
– Bump tape at 2% chord on the upper surface 

• Devices  
– Gurney flaps  
– Vortex generators at 30% and 40% chord  

• Combinations of different devices and LER 
• In total 45 and 48 series 
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Comparison of XFOIL and experiment 
DTU-230 
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Comparison of XFOIL and experiment 
DTU-230 
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DTU-230 Vortex Generators 
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DTU-230 with Gurney flaps 
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DTU-236 
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Comparison of XFOIL and experiment 
DTU-236 
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DTU-236 leading edge roughness 
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Conclusion 
• Shape perturbation function is a good method – easy to implement and 

manageable  
– Small number of design variables 
– Many possibilities regarding constraints  

• new airfoils DTU-230 and DTU-236 – satisfying performance 
 

• More research on flow solvers for thick airfoils is needed 
• Experimental data should be also taken with precaution- very important 

to know details about the tunnel and the campaign 
 

 
•  Future work - use the new airfoil family for full blade design 

– Optimise planform to reduce the noise 
– Validate with CFD 
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Thank you for your attention 
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