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Wind turbine wakes in an off-shore wind farm

Wake deficit ⇒ Wind farm energy losses 10-20%

Wake turbulence ⇒ Increases blade fatigue loads

Figure : Horns Rev off-shore wind farm. Photographer: Christian Steiness
M. Paul van der Laan DTU Wind Energy
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The rotor forces are modeled with an actuator disk.

The flow is resolved with EllipSys3D.

The flow is driven by turbulence since Re ∼ 107.
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Wakes in CFD
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(−) standard k-ε model.

M. Paul van der Laan DTU Wind Energy



Introduction The k-ε-fP model Wind farms Conclusions and future work

Wakes in CFD

Relative wind direction [◦]

U
UH,∞

2.5D

-30 -20 -10 0 10 20 30
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

Relative wind direction [◦]

U
UH,∞

2.5D

-30 -20 -10 0 10 20 30
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

Relative wind direction [◦]

U
UH,∞

2.5D

-30 -20 -10 0 10 20 30
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

Relative wind direction [◦]

U
UH,∞

2.5D

-30 -20 -10 0 10 20 30
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

Velocity deficit (•) Field measurements of Nibe wind turbine
(D=40 m).

Resolve large scale turbulence using
(−) Large-Eddy Simulation (LES).
Model all turbulence using
Reynold-Averaged Navier-Stokes (RANS):

(−) standard k-ε model.
(−) k-ε-fP model.
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Wakes in CFD
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Wakes in CFD

Streamwise Reynolds-stress
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(1)

νT = CµfP
k2

ε
(2)

An isotropic eddy-viscosity model with a variable Cµ.

fP is derived from Reynolds-stress modelling and it is based on
the work of Apsley and Leschziner [2].
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The k-ε-fP model.

σ
σ̃

fP

CR = 1.8

0
0

0.5

1.5

2.5

3

3.5

2

2

1

4

4

6 8 10

σ as the shear parameter σ ≡
k
ε

√

(

∂Ui

∂xj

)2
and σ̃ is the shear

parameter in the log law region.

M. Paul van der Laan DTU Wind Energy



Introduction The k-ε-fP model Wind farms Conclusions and future work

The k-ε-fP model.

σ
σ̃

fP

CR = 1.8

0
0

0.5

1.5

2.5

3

3.5

2

2

1

4

4

6 8 10

σ as the shear parameter σ ≡
k
ε

√

(

∂Ui

∂xj

)2
and σ̃ is the shear

parameter in the log law region.

In the log law (σ = σ̃): fP = 1.

M. Paul van der Laan DTU Wind Energy



Introduction The k-ε-fP model Wind farms Conclusions and future work

The k-ε-fP model.

σ
σ̃

fP

CR = 1.8

0
0

0.5

1.5

2.5

3

3.5

2

2

1

4

4

6 8 10

σ as the shear parameter σ ≡
k
ε

√

(

∂Ui

∂xj

)2
and σ̃ is the shear

parameter in the log law region.

In the log law (σ = σ̃): fP = 1.

High velocity gradients (σ > σ̃): fP < 1 ⇒ less dissipative.

M. Paul van der Laan DTU Wind Energy



Introduction The k-ε-fP model Wind farms Conclusions and future work

The k-ε-fP model.
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and σ̃ is the shear

parameter in the log law region.

In the log law (σ = σ̃): fP = 1.

High velocity gradients (σ > σ̃): fP < 1 ⇒ less dissipative.

CR controls the behavior of fP . From calibration with LES:
CR = 4.5.

M. Paul van der Laan DTU Wind Energy



Introduction The k-ε-fP model Wind farms Conclusions and future work

Wind Farms
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Test cases: two wind farms.

Wieringermeer: Dutch
on-shore wind farm,
5×2.5 MW.

Horns Rev: Danish
off-shore wind farm,
80×2 MW.
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Wieringermeer wind farm: layout.

North

275◦

2.5D3.5D

3.8D

MM3

T5 T6 T7 T8 T9

y
D

x
D

-2

0

0

2

4

-5 5 10 15

M. Paul van der Laan DTU Wind Energy



Introduction The k-ε-fP model Wind farms Conclusions and future work

Wieringermeer wind farm: power deficit.

k-ε k-ε-fP data, 275◦±3◦ .

Case 1: low IH,∞ (2.4%) Case 2: high IH,∞ (9.6%)
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Wieringermeer wind farm: atmospheric stability.

case 1: low IH,∞ (2.4%) case 2: high IH,∞ (9.6%)
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Wieringermeer wind farm: atmospheric stability.

case 1: low IH,∞ (2.4%) case 2: high IH,∞ (9.6%)
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Stable atmospheric stability cannot be modelled by simply
lowering the turbulence intensity!
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Wieringermeer wind farm: effect of wake rotation.
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Case 1: low IH,∞ (2.4%) Case 2: high IH,∞ (9.6%)

PTi
PT5

0

0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

0.2
0.3

0.1

T5 T6 T7 T8 T9 T5 T6 T7 T8 T9

Wind turbine

M. Paul van der Laan DTU Wind Energy



Introduction The k-ε-fP model Wind farms Conclusions and future work

Wieringermeer wind farm: effect of wake rotation.

With rotation Without rotation

Case 1: low IH,∞ (2.4%) Case 2: high IH,∞ (9.6%)

PTi
PT5

0

0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

0.2
0.3

0.1

T5 T6 T7 T8 T9 T5 T6 T7 T8 T9

Wind turbine

Effect of wake rotation on power deficit is negligible.

M. Paul van der Laan DTU Wind Energy



Introduction The k-ε-fP model Wind farms Conclusions and future work

Wieringermeer wind farm: effect of wake rotation.

With rotation Without rotation
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Effect of wake rotation on power deficit is negligible.

In contradiction with Wu and Porté-Agel [4], but they used a
different AD force methods, for the wind farm simulations
with and without wake rotation.
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Horns Rev wind farm: layout.
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Horns Rev wind farm: power deficit in row B.
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Horns Rev wind farm: power deficit in row G.
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Why is the power deficit different for similar rows?
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What is going on in the Horns Rev wind farm?

Why is the power deficit different for similar rows?

Why are the RANS models overpredicting the power deficit?

Answer ⇒ wind direction uncertainty of the measurements caused
by:
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What is going on in the Horns Rev wind farm?

Why is the power deficit different for similar rows?

Why are the RANS models overpredicting the power deficit?

Answer ⇒ wind direction uncertainty of the measurements caused
by:

Spatial decorrelation of the reference wind direction
measurement and power measurements.

Using wind turbine yaw sensors to determine as wind direction
measurements.

The change in wind direction due to large scale turbulence
that is statistically not well represented within ten minute
averages.
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Wind direction uncertainty in the Horns Rev wind farm.
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Including the wind direction uncertainty as a Gaussian

average.

Simulate multiple wind directions on an interval ±3σ:
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Horns Rev wind farm: power deficit in row B including wind

direction uncertainty.
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Horns Rev wind farm: power deficit in row G including wind

direction uncertainty.
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Conclusions

Single wakes:

In terms of velocity deficit the k-ε-fP model shows large a
improvement compared to the standard k-ε model.
The improvements are realized by introducing a variable Cµ

that decreases the eddy-viscosity behind the wind turbine and
delays the wake recovery.
The k-ε-fP model does not improve the wake turbulence
significantly because it is an isotropic turbulence model.
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Conclusions

Wind farms:

The effect of wake rotation on the power deficit is negligible.
Stable atmospheric stability cannot be modelled by lowering
the turbulence intensity.
The measured power deficit in wind farms have a high wind
direction uncertainty.
Including the measured wind direction uncertainty as Gaussian
average of a range of simulated wind directions leads to a
more fair comparison.
The k-ε-fP model compares better with the measurements
than the standard k-ε model, especially for closely spaced wind
turbines.
Both RANS models calculate similar power deficits at the
third/fourth wind turbine in a row. Hence, the standard k-ε
model may not be a bad model choice if the anual energy
production of large wind farms needs to be calculated.
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Future work

Model the effects of stable atmospheric stability in RANS.
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Future work

Model the effects of stable atmospheric stability in RANS.

Further investigate measurements uncertainty in wind farms.
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