A modified \mathbf{k} - ε model applied to wind farms [1]

M. Paul van der Laan

Supervisors and contributers: Niels Sørensen, Pierre-Elouan Réthoré, Jakob Mann, Mark Kelly, Niels Troldborg, Kurt Hansen, Juan Pablo Murcia

Progress Meeting Flow Center, August 26, 2014

DTU Wind Energy Department of Wind Energy

Outline

スポト スモト スモト

=

Wind farms

Conclusions and future work

Wind turbine wakes in an off-shore wind farm

Figure : Horns Rev off-shore wind farm. Photographer: Christian Steiness

Conclusions and future work

Wind turbine wakes in an off-shore wind farm

Figure : Horns Rev off-shore wind farm. Photographer: Christian Steiness

Conclusions and future work

Wind turbine wakes in an off-shore wind farm

Figure : Horns Rev off-shore wind farm. Photographer: Christian Steiness

ヨト ヨ

æ

< 🗇 🕨

Wakes in CFD

• The rotor forces are modeled with an actuator disk.

- The rotor forces are modeled with an actuator disk.
- The flow is resolved with EllipSys3D.

- The rotor forces are modeled with an actuator disk.
- The flow is resolved with EllipSys3D.
- The flow is driven by turbulence since $Re \sim 10^7$.

• (•) Field measurements of Nibe wind turbine (D=40 m).

ъ

₽ ►

æ

- (•) Field measurements of Nibe wind turbine (D=40 m).
 - Resolve large scale turbulence using (-) Large-Eddy Simulation (LES).

- (•) Field measurements of Nibe wind turbine (D=40 m).
 - Resolve large scale turbulence using (-) Large-Eddy Simulation (LES).
 - Model all turbulence using Reynold-Averaged Navier-Stokes (RANS):
 - (-) standard $k \varepsilon$ model.

- (•) Field measurements of Nibe wind turbine (D=40 m).
 - Resolve large scale turbulence using
 (-) Large-Eddy Simulation (LES).
 - Model all turbulence using Reynold-Averaged Navier-Stokes (RANS):

< 🗇 🕨

- (-) standard k-ε model.
- (-) $k \varepsilon f_P$ model.

Introduction	The k- ε -f _P model	Wind farms	Conclusions and futur
	Wak	es in CED	

work

Velocity deficit

・ロト ・ 日 ・ ・ ヨ ・

- ∢ ≣ ▶

Э

Introduction	The k- ε -fp model	Wind farms	Conclusions and future work
	Wak	es in CFD	

Streamwise Reynolds-stress

ъ

< 🗇 🕨

æ

・ロン ・四ト ・ヨン ・ヨン

æ

The \mathbf{k} - ε - $\mathbf{f}_{\mathbf{P}}$ model

M. Paul van der Laan DTU Wind Energy

Introduction	The k-ε-f _P model	Wind farms	Conclusions and future wor
	The k - ε	- f P model [3].	

$$\overline{u'_{i}u'_{j}} = \frac{2}{3}k\delta_{ij} - \nu_{T}\left(\frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}}\right)$$
(1)
$$\nu_{T} = C_{\mu}f_{P}\frac{k^{2}}{\varepsilon}$$
(2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへで

M. Paul van der Laan DTU Wind Energy

Introduction	The k- ε -fp model	Wind farms	Conclusions and future work
	The k -ε	- f_P model [3] .	

$$\overline{u'_{i}u'_{j}} = \frac{2}{3}k\delta_{ij} - \nu_{T}\left(\frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}}\right)$$
(1)
$$\nu_{T} = C_{\mu}f_{P}\frac{k^{2}}{\varepsilon}$$
(2)

・ロト ・日ト ・日

• An isotropic eddy-viscosity model with a variable C_{μ} .

Introduction	The k- ε -fp model	Wind farms	Conclusions and future work
	The k -ε	- f p model [3].	

$$\overline{u'_{i}u'_{j}} = \frac{2}{3}k\delta_{ij} - \nu_{T}\left(\frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}}\right)$$
(1)
$$\nu_{T} = C_{\mu}f_{P}\frac{k^{2}}{\varepsilon}$$
(2)

- An isotropic eddy-viscosity model with a variable C_{μ} .
- *f_P* is derived from Reynolds-stress modelling and it is based on the work of Apsley and Leschziner [2].

The \mathbf{k} - ε - $\mathbf{f}_{\mathbf{P}}$ model.

• σ as the shear parameter $\sigma \equiv \frac{k}{\varepsilon} \sqrt{\left(\frac{\partial U_i}{\partial x_j}\right)^2}$ and $\tilde{\sigma}$ is the shear parameter in the log law region.

Wind farms

Conclusions and future work

The \mathbf{k} - ε - $\mathbf{f}_{\mathbf{P}}$ model.

• σ as the shear parameter $\sigma \equiv \frac{k}{\varepsilon} \sqrt{\left(\frac{\partial U_i}{\partial x_j}\right)^2}$ and $\tilde{\sigma}$ is the shear parameter in the log law region.

• In the log law
$$(\sigma = \tilde{\sigma})$$
: $f_P = 1$.

Conclusions and future work

The \mathbf{k} - ε - $\mathbf{f}_{\mathbf{P}}$ model.

- σ as the shear parameter $\sigma \equiv \frac{k}{\varepsilon} \sqrt{\left(\frac{\partial U_i}{\partial x_j}\right)^2}$ and $\tilde{\sigma}$ is the shear parameter in the log law region.
- In the log law $(\sigma = \tilde{\sigma})$: $f_P = 1$.
- High velocity gradients ($\sigma > \tilde{\sigma}$): $f_P < 1 \Rightarrow$ less dissipative.

Introduction	The k-ε-fp model	Wind farms	Conclusions and future work
	The k	- <i>ε</i> - f ₽ model.	
	4	c_{-18}	

• σ as the shear parameter $\sigma \equiv \frac{k}{\varepsilon} \sqrt{\left(\frac{\partial U_i}{\partial x_j}\right)^2}$ and $\tilde{\sigma}$ is the shear parameter in the log law region.

- In the log law $(\sigma = \tilde{\sigma})$: $f_P = 1$.
- High velocity gradients ($\sigma > \tilde{\sigma}$): $f_P < 1 \Rightarrow$ less dissipative.
- C_R controls the behavior of f_P . From calibration with LES: $C_R = 4.5$.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

æ

Wind Farms

M. Paul van der Laan DTU Wind Energy

he k- ε -fp model

Wind farms

Conclusions and future work

Test cases: two wind farms.

The k- ε -fp model

Wind farms

Conclusions and future work

Test cases: two wind farms.

• Wieringermeer: Dutch on-shore wind farm, 5×2.5 MW.

The k- ε -fp model

Wind farms

Conclusions and future work

Test cases: two wind farms.

- Wieringermeer: Dutch on-shore wind farm, 5×2.5 MW.
- Horns Rev: Danish off-shore wind farm, 80×2 MW.

Introduction	The k- ε -f _P model	Wind farms	Conclusions and future work
	Wieringermeer	wind farm:	layout.

メロト メタト メヨト メヨト 三日

イロト イヨト イヨト

æ

Wieringermeer wind farm: power deficit.

Wieringermeer wind farm: atmospheric stability.

< 🗗 >

< ∃ >

-

Э

Wieringermeer wind farm: atmospheric stability.

• Stable atmospheric stability cannot be modelled by simply lowering the turbulence intensity!

< 177 ▶

-

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Wieringermeer wind farm: effect of wake rotation.

Wind turbine

《曰》 《圖》 《臣》 《臣》

Э

Wieringermeer wind farm: effect of wake rotation.

• Effect of wake rotation on power deficit is negligible.

<ロ> (四) (四) (日) (日) (日)

Э

Wieringermeer wind farm: effect of wake rotation.

- Effect of wake rotation on power deficit is negligible.
- In contradiction with Wu and Porté-Agel [4], but they used a different AD force methods, for the wind farm simulations with and without wake rotation.

In	 \mathbf{n}	а		~1	 \mathbf{n}	n
	 U	u	u	-	 U	

The k- ε -f_P model

Wind farms

Conclusions and future work

ヨト ヨ

@ ▶

Horns Rev wind farm: layout.

Э

≣⇒

Horns Rev wind farm: power deficit in row B.

Wind turbine

< 🗗 ►

E

≣⇒

A.

Horns Rev wind farm: power deficit in row G.

• Why is the power deficit different for similar rows?

M. Paul van der Laan DTU Wind Energy

- Why is the power deficit different for similar rows?
- Why are the RANS models overpredicting the power deficit?

- Why is the power deficit different for similar rows?
- Why are the RANS models overpredicting the power deficit?

- Why is the power deficit different for similar rows?
- Why are the RANS models overpredicting the power deficit?

Answer \Rightarrow wind direction uncertainty of the measurements caused by:

- Why is the power deficit different for similar rows?
- Why are the RANS models overpredicting the power deficit?

Answer \Rightarrow wind direction uncertainty of the measurements caused by:

• Spatial decorrelation of the reference wind direction measurement and power measurements.

- Why is the power deficit different for similar rows?
- Why are the RANS models overpredicting the power deficit?

Answer \Rightarrow wind direction uncertainty of the measurements caused by:

- Spatial decorrelation of the reference wind direction measurement and power measurements.
- Using wind turbine yaw sensors to determine as wind direction measurements.

- Why is the power deficit different for similar rows?
- Why are the RANS models overpredicting the power deficit?

Answer \Rightarrow wind direction uncertainty of the measurements caused by:

- Spatial decorrelation of the reference wind direction measurement and power measurements.
- Using wind turbine yaw sensors to determine as wind direction measurements.
- The change in wind direction due to large scale turbulence that is statistically not well represented within ten minute averages.

The k- ε -f_P model

Wind farms

Conclusions and future work

Wind direction uncertainty in the Horns Rev wind farm.

$$\Delta \theta_i = \theta_{yaw,i} - \theta_{M2,i} \qquad (3)$$

Introduction The k-e-fp model Wind farms Conclusions and future work Including the wind direction uncertainty as a Gaussian average.

Simulate multiple wind directions on an interval $\pm 3\sigma$:

$$\mathsf{Power} = \sum_{i=1}^{N} \mathsf{Power}(\theta_i) \times \mathsf{probability}(\theta_i) \tag{4}$$

M. Paul van der Laan DTU Wind Energy

 Introduction
 The k-e-fp model
 Wind farms
 Conclusions and future work

 Horns Rev wind farm: power deficit in row B including wind direction uncertainty.
 Output
 Output

 Introduction
 The k-ε-fp model
 Wind farms
 Conclusions and future work

 Horns Rev wind farm: power deficit in row G including wind direction uncertainty.
 Gincluding wind

Introduction	The k- ε -f _P model	Wind farms	Conclusions and future work
	Со	nclusions	

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

æ

Introduction	The k- ε -f _P model	Wind farms	Conclusions and future work
	Co	nclusions	

 In terms of velocity deficit the k-ε-f_P model shows large a improvement compared to the standard k-ε model.

Introduction	The k- ε -f _P model	Wind farms	Conclusions and future work
	Co	nclusions	

- In terms of velocity deficit the k-ε-f_P model shows large a improvement compared to the standard k-ε model.
- The improvements are realized by introducing a variable C_{μ} that decreases the eddy-viscosity behind the wind turbine and delays the wake recovery.

Introduction	The k- ε -fp model	Wind farms	Conclusions and future work
	Со	nclusions	

- In terms of velocity deficit the k-ε-f_P model shows large a improvement compared to the standard k-ε model.
- The improvements are realized by introducing a variable C_{μ} that decreases the eddy-viscosity behind the wind turbine and delays the wake recovery.
- The k-ε-f_P model does not improve the wake turbulence significantly because it is an isotropic turbulence model.

Introduction	The k- <i>c</i> -fp model	Wind farms	Conclusions and future work
	Со	nclusions	
Win	d farms [.]		

• The effect of wake rotation on the power deficit is negligible.

・ロト ・ 日 ・ ・ ヨ ・

- ∢ ≣ →

Э

IIIIIOuuciioii	The k-a-ip model		Conclusions and future work
	Со	nclusions	
Win	d farms:		
۹	The effect of wake rota	tion on the power	deficit is negligible.

• Stable atmospheric stability cannot be modelled by lowering the turbulence intensity.

A ₽ >

-

IIIIIOuuciioII	The k-a-ip model		
	Со	nclusions	
• Wind • •	d farms: The effect of wake rota Stable atmospheric stal the turbulence intensity	tion on the power bility cannot be mo	deficit is negligible. odelled by lowering

• The measured power deficit in wind farms have a high wind direction uncertainty.

A (1) > (1)

Introduction	The k e ip model		
	Со	nclusions	
Wind	farms:		
•	The effect of wake rota Stable atmospheric stat	tion on the power bility cannot be m	deficit is negligible. odelled by lowering

- the turbulence intensity.
- The measured power deficit in wind farms have a high wind direction uncertainty.
- Including the measured wind direction uncertainty as Gaussian average of a range of simulated wind directions leads to a more fair comparison.

Conclusions
• Wind farms:
 The effect of wake rotation on the power deficit is negligible.

• Stable atmospheric stability cannot be modelled by lowering the turbulence intensity.

Conclusions and future work

- The measured power deficit in wind farms have a high wind direction uncertainty.
- Including the measured wind direction uncertainty as Gaussian average of a range of simulated wind directions leads to a more fair comparison.
- The k-ε-f_P model compares better with the measurements than the standard k-ε model, especially for closely spaced wind turbines.

Conclusions	
• Wind farms:	

The k-s-fp model

Introduction

 Stable atmospheric stability cannot be modelled by lowering the turbulence intensity.

Wind farms

Conclusions and future work

- The measured power deficit in wind farms have a high wind direction uncertainty.
- Including the measured wind direction uncertainty as Gaussian average of a range of simulated wind directions leads to a more fair comparison.
- The k-ε-f_P model compares better with the measurements than the standard k-ε model, especially for closely spaced wind turbines.
- Both RANS models calculate similar power deficits at the third/fourth wind turbine in a row. Hence, the standard k-ε model may not be a bad model choice if the anual energy production of large wind farms needs to be calculated.

Introduction	The k- ε -f _P model	Wind farms	Conclusions and future work
	Fut	ure work	

• Model the effects of stable atmospheric stability in RANS.

(本間) (本語))

< ∃ >

Э

Introduction	The k- ε -f _P model	Wind farms	Conclusions and future work
	Fu	iture work	

- Model the effects of stable atmospheric stability in RANS.
- Further investigate measurements uncertainty in wind farms.

Introduction	The k- <i>ɛ</i> -fp model	Wind farms	Conclusions and future work
	Bibl	iography I	

- van der Laan MP, Sørensen NN, Réthoré PE, Mann J, Kelly MC, Troldborg N. The k- ε - f_p model applied wind farms. Wind Energy Accepted in August 2014; .
- Apsley DD, Leschziner MA. A new low-Reynolds-number nonlinear two-equation turbulence model for complex flows. International Journal of Heat and Fuid Flow 1998; 19:209–222.
- van der Laan MP, Sørensen NN, Réthoré PE, Mann J, Kelly MC, Troldborg N, Schepers JG, Machefaux E. An improved k-ε model applied to a wind turbine wake in atmospheric turbulence. Wind Energy 2014; Published online.

Introduction	The k- ε -fp model	Wind farms	Conclusions and future work
	Bibli	iography II	

Wu YT, Porté-Agel F. Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm. <u>Proceeding for the</u> <u>ICOWES2013</u>, Copenhagen, Denmark, 2013; 537–548.