Coupling the Navier Stokes actuator line model with the aeroelastic solver HAWC2

Niels Troldborg and Joachim Heinz

Wind Energy Department, DTU Wind Energy, DK-4000 Roskilde, Denmark

Risø DTU National Laboratory for Sustainable Energy

HAWC2

Predicts structural response of wind turbine in time domain

- Structural model:
 - Multibody formulation (multiple degrees of freedom)
 - Large deflections, torsion, etc.
- Aerodynamic model:

Blade Element Momentum (BEM) theory with sub models (corrections):

- Dynamic stall
- Skew inflow
- Dynamic inflow
- > Wake

≻

Rotor CFD using EllipSys3D

Simulates the flow field around the wind turbine

> Flow model:

Finite volume discretized Navier-Stokes equations (RANS or LES)

Detailed modelling of flow around the rotor

Rotor models:

Fully resolved (FR), actuator line (AL) or actuator disk (AD)

> Stiff rotor, no control

Coupling of HAWC2 with fully resolved rotor CFD

Aero-elastic rotor CFD (by JHEI):

- Structural response computed with HAWC2
- Aerodynamic forces computed with EllipSys3D
 - Fully meshed rotor
 - Blade deformation captured using deforming meshes

Coupling of HAWC2 with fully resolved rotor CFD

Aero-elastic rotor CFD (by JHEI):

- Structural response computed with HAWC2
- Aerodynamic forces computed with EllipSys3D
 - Fully meshed rotor
 - Blade deformation captured using deforming meshes
- Coupled using OpenMDAO framework
 - Execution and connection of different codes and optimizers
 - Open source (written in Python)
 - Minimally intrusive
 - Generic (standardized interface functions)
 - Flexible (codes in different languages and on different platforms)

Coupling of HAWC2 and the actuator line model

Objectives and motivation:

Connect HAWC2 and AL through the OpenMDAO framework

- Flexible AL including control
- Faster than coupling HAWC2 to fully resolved rotor CFD

Coupling of HAWC2 and the actuator line model

Coupling of HAWC2 and AL is relatively simple

Both based on blade element theory and airfoil data

Coupling of HAWC2 and the actuator line model

Coupling of HAWC2 and AL is relatively simple

Both based on blade element theory and airfoil data

Validation: Simulation of NREL 5MW wind turbine

DTU

- > Wind speed: $V_{\infty} = 8$ m/s
- > Rotational speed $\Omega = 0.964$ rad/s
- Blade loading determined from airfoil data
- Stiff blades, no tower

Validation: Simulation of NREL 5MW wind turbine

- > Wind speed: $V_{\infty} = 8$ m/s
- > Rotational speed $\Omega = 0.964$ rad/s
- Blade loading determined from airfoil data
- Stiff blades, no tower

Good agreement!

12 **DTU Wind Energy**

Flowcenter meeting

August 26

Results: HAWC-AL Simulations of Wake Interaction

Wake interaction between the 95 kW Tellus turbine and the 500 kW Nordtank turbine

- > Wind speed: $V_{\infty} = 8$ m/s (no shear)
- Cubic mesh with side length 512.5 m
- > Number of cells $96 \cdot 96 \cdot 128 = 1.18 \cdot 10^{6}$
- Ground modelled as flat symmetry surface

Results: HAWC-AL Simulations of Wake Interaction

Partial wake

Results: HAWC-AL Simulations of Wake Interaction

Partial wake

Conclusions & Future work

- The actuator line method has been coupled with the HAWC2 code
- A standard HAWC2 htc input file is used to defined the rotor for the coupled simulations
- > The coupling can handle a multiple of different types of turbines
- Next step is to couple the AD with HAWC2