
Parallel Conjugate Gradient Solver

Dmitry K. Kolmogorov, Niels N. Sørensen
Wen Z. Shen and Jens N. Sørensen

DTU, Wind Energy

August 26, 2014

Outline

• Problem statement

• Parallel conjugate gradient solver

• Optimization techniques

• EllipSys performance enhancement

• Conclusions

Speed Up

• Lid-driven cavity flow, Re=100

• Grid ~ 1 million cells with

• 32x32 blocks

32x32 cells per block

EllipSys flow solver

Momentum equations

PC equation

MG solver

Restriction/Prolongation

Relaxation

Coarse Grid solver

Parallel CG solver

CG Solver enabled on different grid
levels of MG solver:

Speed Up of the CG solver

Level Cells per block

2 16x16

3 8x8

4 4x4

5 2x2

Grid 32x32 blocks with 32x32 cells per block

Optimization of the Parallel CG solver

• V0: Fine grain parallelism

• V1: Coarse grain parallelism

 (threads created outside of loops)

• V2: With decreased # of barriers
(some variables transformed to
private)

• V3: Explicit loop partitioning +
reduction replaced by atomic call

20 % increase of efficiency compared to straightforward implementation

EllipSys performance

Grid ~ 1 million cells: 32x32 blocks with 32x32 cells per block

EllipSys performance

Grid ~ 17 million cells: 64x64 blocks with 64x64 cells per block

EllipSys performance

• Grid ~ 17 million cells with

• 64x64 blocks

64x64 cells per block

• Grid ~ 1 million cells with

• 32x32 blocks

32x32 cells per block

Conclusions

• EllipSys flow solver is known to be originally parallelized on machines with
distributed memory architecture, where it has recommended it’s high efficiency.

• Hybrid distributed/shared machine memory architecture with multiple number of
cores per node becomes widespread today.

• Conjugate gradient solver of EllipSys flow solver was parallelized using shared
memory processing based on OpenMP directives.

• The implemented parallel solver extends EllipSys code to state of the art
architectures and substantially decreases the required CPU time and the required
computational resources.

