Forest flows and CFD

Louis-Étienne Boudreault Ebba Dellwik Andreas Bechmann

DTU Wind Energy

June 4, 2013

(DTU Wind Energy)

Outline

- Introduction
- 2 Theory
- Methodology
- Results
- Conclusion

Motivation

Context

• Modification of RANS $k-\epsilon$ equations to account for forest effects

Canopy model: [Sogachev, 2009]

Momentum:

$$\frac{\partial u_i}{\partial t} = \dots - C_d LAD(z)u_i|U|$$

Dissipation:

$$\frac{\partial \epsilon}{\partial t} = \dots - 12C_{\mu}^{1/2}C_{d}LAD(z)|U|(C_{\epsilon 1} - C_{\epsilon 2})\epsilon$$

(DTU Wind Energy)

Flow center meeting

Context

Context

Theory

The Beer-Lambert law

Light attenuation in plant canopies: [Monsi and Saeki, 2005]

$$LAI = -\frac{1}{\gamma} \ln \left(\frac{I}{I_0} \right)$$

⇒Probability a beam reaches the the canopy depth L

Discrete analogy [Richardson, 2009]:

$$LAI = -\frac{1}{\gamma} \ln \left(\frac{R_g}{R_t} \right)$$

Theory

kth level:

$$LAI = \int_{0}^{z} LAD dz \Rightarrow LAD = \frac{dLAI}{dz}$$

,

$$LAD(k) = rac{1}{\gamma \Delta z} \left(rac{n_I(k)}{n_I(k) + n_P(k)}
ight)$$

[Hosoi and Omasa, 2006]

(DTU Wind Energy) Flow center meeting

June 4, 2013 8 / 19

Extinction coefficient

Algorithm

Steps:

- **Old Classification** of LiDAR returns into ground and vegetation points:
 - MCC-LIDAR: multi-scale curvature algorithm [Evans and Hudak, 2007]
- 2 Local binning algorithm for generating a forest grid:

Computation of the 3D discrete LAD values.

Skogaryd

DTU

A tall **pine tree** forest, $h \approx 30 - 35m$. Grid:

- Resolution = 10m
- Searching radius = 10m
- Vertical resolution = 1m
- $L \times L = 5km \times 5km$
- 499 × 499
- Instrumented mast [Dellwik,2013]

CFD model

- Finite-volume flow solver EllipSys3D [Michelsen, 1982, Sørensen, 1995]
- $k \epsilon$ model + diffusive terms [Sogachev, 2012]
- ullet au=cst, steady-state, neutral, no Coriolis force
- ullet Computational grid: 10m resolution /pprox 22 million cells

Results

(DTU Wind Energy) Flow center meeting June 4, 2013 13 / 19

Results

Results

Conclusion

- A 3D forest gridding methodology proposed
- Coupling with Ellipsys3D
- Future work:
 - Complete sensitivity analysis
 - ullet Validation of forest properties (Gothenburg University o allometry)
 - Other sites
 - Addition of Coriolis + temperature effects

Thank you for your attention!

Grid independence

References

J. Finnigan

Turbulence in plant canopies.

Annu. Rev. of Fluid Mech., 149:1152-1160, 2009.

J. A. Michelsen.

Basis3D - a Platform for Development of Multiblock PDE Solvers. AFM 92-05, Technical University of Denmark, 1992.

N. N. Sørensen.

General purpose flow solver applied to flow over hills.

Risø DTU report Risø-R-827(EN), 1995.

M. Monsi and T. Saeki.

On the factor light in plant communities and its importance for matter production. *Annals of Botany*, 95:549–567, 2005.

J. Richardson and L. Moskal and S.-H. Kim

Modeling approaches to estimates effective leaf area index from aerial discrete-return LiDAR.

Agricultural and Forest Meteorology, 149:1152–1160, 2009.

References

F. Hosoi and K. Omasa

Voxel-based 3D modeling of individual trees for estimating leaf area density using high-resolution portable scanning LiDAR.

IEEE Transactions on geoscience and remote sensing, 44(12):3610–3618, 2009.

A. Sogachev.

A note on two-equation closure modelling of canopy flow. Boundary-Layer Meteorology, 130(3):423–435, 2009.

A. Sogachev.

Consistent two-equation closure modelling for atmospheric research: buyancy and vegetation implementations.

Boundary-Layer Meteorology, 145:307-327, 2012.

J. Evans and T. Hudak.

A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments.

IEEE Transactions on Geoscience and Remote Sensing, 4(45):1029–1038, 2007.

